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ABSTRACT
In this paper, we perform the first multifaceted measurement study
to investigate the widespread insecure practices employed by ter-
tiary education institutes (TEIs) around the globe when offering
WPA2-Enterprise Wi-Fi services. The security of such services crit-
ically hinges on two aspects: (1) the connection configuration on
the client-side; and (2) the TLS setup on the authentication servers.
Weaknesses in either can leave users susceptible to credential theft.
Typically, TEIs prescribe to their users either manual instructions
or pre-configured profiles (e.g., eduroam CAT). For studying the
security of configurations, we present a framework in which each
configuration is mapped to an abstract security label drawn from
a strict partially ordered set. We first used this framework to eval-
uate the configurations supported by the user interfaces (UIs) of
mainstream operating systems (OSs), and discovered many design
weaknesses. We then considered 7045 TEIs in 54 countries/regions,
and collected 7275 configuration instructions from 2061 TEIs. Our
analysis showed that majority of these instructions lead to insecure
configurations, and nearly 86% of those TEIs can suffer from cre-
dential thefts on at least one OS. We also analyzed a large corpus
of pre-configured eduroam CAT profiles and discovered several
misconfiguration issues that can negatively impact security. Finally,
we evaluated the TLS parameters used by authentication servers of
thousands of TEIs and discovered perilous practices, such as the use
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1 INTRODUCTION
Wi-Fi is one of the cornerstones of digital communication, providing
connectivity to a plethora of devices. The IEEE 802.11i Wi-Fi stan-
dard is commonly referred to as WPA2 (Wi-Fi Protected Access II)
by consumer products. Despite the recent release of WPA3, WPA2
continues to be dominant due to the needs to support pre-existing
devices. Authentication in IEEE 802.11i can be achieved through
either a pre-shared key (PSK) or IEEE 802.1X. Many organizations
including companies and tertiary educational institutions (TEIs)
currently rely on IEEE 802.1X authentication (the so-called WPA2-
Enterprise mode) for providing their users authenticated access to
the Internet and other internal resources.
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In a typical WPA2-Enterprise setup, a TLS tunnel is created,
where the back-end authentication server authenticates itself to the
user’s device using X.509 certificates during the TLS handshake,
and then a password-based user authentication happens inside
the tunnel. In most cases, the user authentication reuses the same
credential used by the user’s other services (e.g., email) at the or-
ganization through an existing single sign-on (SSO) service (e.g.,
Microsoft AD FS). While this improves convenience and user ex-
perience, it makes WPA2-Enterprise a lucrative target for attacks,
such as the “Evil Twin” (ET) attack [13, 23], where the adversary
sets up a rogue access point to trick users into handing over their
SSO credentials. To make matters worse, the ET attack can be easily
performed with off-the-shelf hardware and software components
costing around USD $100. Weaknesses allowing the ET attack have
been observed in real-life. For instance, a recent report found that
it was possible to use the ET attack to steal credentials of staffs
working at the United States Department of the Interior, leading to
access of its network and other internal systems [8].
Goal. In this paper, we investigate potential configuration weak-
nesses which could enable the ET and other attacks in the WPA2-
Enterprise ecosystem, especially among TEIs. For our investigation,
we resort to a multifaceted measurement study.

The security of a WPA2-Enterprise Wi-Fi connection relies on
the robustness of the following two factors: (1) the user-side (sup-
plicant) configuration; (2) the strength of the TLS parameters used
by the back-end authentication server. A supplicant configuration
can be viewed as assigning values to different connection attributes
including server name, certificate authorities (CAs), secondary au-
thentication method, etc. TEIs deliver to their staffs and students
OS-specific supplicant configurations by prescribing either (a) step-
by-step manual instructions that users are expected to follow in
the configuration UI of the target OS, or (b) pre-configured pro-
files through installers such as eduroam CAT, which can be down-
loaded and installed in advance. Depending on the target OS, pre-
configured profiles might be able to assign values to certain connec-
tion attributes that are otherwise impossible through the UI. In this
study, we evaluate the security of WPA2-Enterprise deployment of
TEIs by considering aspects (1)(a), (1)(b), and (2).
Approach. In order to enable fair assessment and comparison of
different connection configurations induced by manual instructions
and pre-configured profiles in a systematic way, we first develop a
comparison framework. The main challenge of developing such a
framework is to identify aspects of the connection configuration
that play a critical part in terms of security. In our framework, each
configuration is assigned an abstract security label, drawn from a
strict partially ordered set of labels in which the relative security
acts as the ordering relation. A strict partial order is used because
it is not always clear how to order two insecure configurations.

Studying aspect (1)(a). Using our comparison framework, we
first evaluate the configuration UIs of mainstream operating sys-
tems (OSs) based on their achievable configurations. We observed
that many OSs contain subtle design weaknesses that hinder users
from achieving a secure WPA2-Enterprise configuration. We re-
ported our findings and recommendations to the corresponding
vendors, and received an assortment of responses: some issues got
fixed and new CVE IDs assigned, others were dismissed.

After analyzing the configurations supported by different OSs,
we then evaluate the quality of manual configuration instructions
prescribed by TEIs. We limit ourselves to TEIs because compa-
nies seldom make their Wi-Fi configuration instructions publicly
accessible. In our large-scale study, we collected 7275 configura-
tion instructions from 2061 TEIs in 54 countries/regions. Using
our framework and knowledge of the OS behaviors, we produced
14602 labels for the resulting configurations on mainstream OSs.
Our results show a grim state of affairs: majority of the instructions
lead to insecure configurations, and 97.2% of TEIs that do not rely
on profile installers prescribe at least one insecure instruction for
the various OSs considered. In other words, countless credentials
around the globe can be easily stolen by the ET attack.

Studying aspect (1)(b). After analyzing the instructions, we
turn our attention to TEIs that provide pre-configured eduroam
CAT profiles. We collected 3593 CAT configuration profiles for each
mainstream OS. Although one can side-step some UI limitations
by using pre-configured profiles, we found that some CAT pro-
files themselves suffer from issues including weak/no server name
checking, CA store pollution with large number of certificates, and
reliance on CA certificates with weak signature algorithms.

Studying aspect (2). To evaluate the strength of TLS connec-
tions induced by the back-end authentication servers, we utilize the
roaming nature of eduroam, and conduct a large scale measurement
study on the various parameters related to the trustworthiness of
the TLS tunnel and X.509 certificates. We successfully measure
the back-end setups of 3637 domains, and observe that many of
them suffer from issues that can hinder proper user configuration
and negatively impact security, including the use of deprecated
versions of TLS (e.g., 1.0 and 1.1), weak signature algorithms, certifi-
cates without meaningful names, expired and extremely long-lived
certificates, and suspected cases of key reuse across institutions.
Finding summary. All in all, the results of our multifaceted study
draw a dire picture of theWPA2-Enterprise ecosystem. Our findings
suggest that the current alarming state of affairs is powered by 3
factors, much like the fire triangle, making deployments susceptible
to the ET attack: 1) misguided UI designs on OSs that confuse and
frustrate users; 2) low consideration of adversaries when prescrib-
ing configuration instructions; 3) subtleties of certificate validation
and server name matching are sometimes misconfigured.
Contributions. We present the first comprehensive measurement
study evaluating the security of WPA2-Enterprise deployments of
TEIs around the globe. Our study consists of the following elements:

(1) A comparison framework for evaluating the security of
WPA2-Enterprise supplicant configurations.

(2) A security evaluation of the UIs and achievable configura-
tions of mainstream OSs, identifying design weaknesses that
lead to insecure configurations and other attacks.

(3) A measurement study of 7275 instructions from 2061 TEIs,
showing 85.7% of TEIs are susceptible to the ET attack.

(4) An evaluation of 3593 CAT profiles for each mainstream OS,
revealing several oversights in pre-configured profiles.

(5) A measurement study evaluating the TLS setup on the back-
end authentication server of 3637 domains, revealing weak
parameters used by many TEIs.
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2 TECHNICAL BACKGROUND
Here we give a brief summary of the terminologies relevant to this
paper. Readers interested in a thorough review of the IEEE 802.11i
and 802.1X standards can consult the literature (e.g., [33] and [34]).

2.1 WPA2-Enterprise, IEEE 802.1X, and EAP
The authentication in WPA2-Enterprise follows the IEEE 802.1X
standard, which provides an authentication mechanism by encap-
sulating the Extensible Authentication Protocol (EAP) over LAN
(and WLAN). Three components are defined for the authentica-
tion process in 802.1X: supplicant, a component of the end-user
device that is seeking to join the network; authenticator (sometimes
known as the “front-end”), a component that is typically a part
of the wireless access point; and authentication server (sometimes
known as the “back-end”), which actually authenticates the user
by checking the received credential. The authentication exchange
happens logically between the supplicant and the authentication
server, with the authenticator relaying messages between the two.
Although 802.1X did not specify the type of authentication server
to be used, in most cases, the back-end would be a RADIUS server
running on a separate system located either in an organization’s
core network or remotely (as in the case of eduroam). RADIUS
can integrate with existing identity providers such as Microsoft
AD FS and LDAP servers, which enables the reuse of existing SSO
credentials for Wi-Fi access.

2.2 EAP methods and TLS tunneling
EAP is a generic authentication framework that does not dictate a
particular way of authenticating users. Instead, it enables protocol
designers to build their own authentication methods. A variety
of EAP methods can be used with 802.1X, but many of them lack
inbuilt confidentiality protection for the messages being exchanged,
and hence are susceptible to eavesdropping, especially in the wire-
less setting. One way of retrofitting crytographic protections to
such EAP methods is to tunnel them through Transport Layer Se-
curity (TLS). In fact, taking advantage of the flexibility of the EAP
framework, several EAP methods were proposed to do exactly that,
with subtle technical differences.

There are two TLS tunneling proposals that have seen consider-
able deployments in the wild, namely, PEAP and EAP-TTLS. Both
of their designs are quite similar, with the phase-1 of EAP aimed at
establishing a TLS tunnel, and if certificates are not used for client
authentication during TLS handshake, the protocol will then go to
the so-called phase-2 authentication (also known as the inner au-
thentication), where the user authenticates to the server through a
different method, typically password-based. This is also how PEAP
and EAP-TTLS differ: inside the TLS tunnel, PEAP simply executes
a second EAP method, but EAP-TTLS exchanges attribute-value
pairs, which allows it to use other non-EAP methods for the inner
authentication [33].

2.3 Phase-2 authentication methods
Here we give an overview of some phase-2 authentication methods
commonly used with PEAP and EAP-TTLS.

2.3.1 PAP and EAP-GTC. Password Authentication Protocol (PAP)
is a simple password-based authentication protocol, and is often
used with EAP-TTLS but not PEAP, since PAP itself is not an EAP
method. Although it can be configured to transmit an obfuscated
password for some deployment scenarios [36, 38], in its simplest
form, the user identity and password are transmitted to the authen-
tication server in cleartext [33], which is typically what happens
when used as the inner authentication of EAP-TTLS [9]. Occasion-
ally PAP is also used together with token cards, as the alphanu-
meric codes generated by those systems can be used to mimic
passwords [33].

EAP Generic Token Card (GTC) is an EAP method based on
exchanging cleartext credentials, which closely resembles PAP. As
the name suggests, EAP-GTC was intended to be used with token
cards, though in reality it is often overloaded for performing a
password-based user authentication instead [33].

2.3.2 EAP-MSCHAP-V2. Another widely used EAP method, espe-
cially among organizations that rely on the Microsoft AD infras-
tructures, is the Microsoft Challenge-Handshake Authentication
Protocol version 2 (MSCHAPv2). Unlike PAP and GTC, MSCHAPv2
does not transmit passwords in cleartext. Instead, the ciphertext of
a challenge hash will be sent, which is encrypted using DES, with
the MD4 hash of the user’s password as the secret key. Given the
captured transcript of a MSCHAPv2 handshake, revealing the secret
key (password hash) is only as difficult as exhaustively searching
for the key of a single DES encryption (a complexity of 256), which
can then be used by an attacker to impersonate the victim in future
MSCHAPv2 attempts [7]. Additionally, MSCHAPv2 also has some
design weaknesses that can be exploited to speed up dictionary
attacks [30, 50], if one wants to reveal the actual password. Despite
its weaknesses, MSCHAPv2 is supported by most mainstream OSs,
and has been widely used as the phase-2 authentication method.

2.4 The Evil Twin attack
One problem ofWPA2 is that the access points are not authenticated
by design, and therefore it is possible for an attacker to impersonate
a known network by setting up a so-called “Evil Twin” (ET) [13, 23].
Depending on the attacker’s goal, the ET attack does not need to
follow a typical man-in-the-middle (MITM) model. In fact, if the
objective is to steal user credentials, which is made particularly
profitable by the reuse of SSO credentials in WPA2-Enterprise, the
attack setup does not even need to provide legitimate connectivity
and can simply terminate after receiving the victim’s response
during the phase-2 authentication. To make matters worse, the ET
attack can be performed using low-cost and highly portable off-
the-shelf hardware and software components. We purchased the
4GB model of Raspberry Pi 4 with less than USD $60, a protective
case at USD $5, and a micro SD card at less than USD $6. We then
install the Raspberry Pi version of Kali Linux and the hostapd-wpe
software package (a configurable implementation of the ET attack),
both of which are free of charge. It took us just a matter of minutes
to set up. The Raspberry Pi 4 hardware works with the necessary
software packages right out of the box, without the need of an extra
USB Wi-Fi adapter, further driving down the cost. With a portable
power bank at less than USD $20, one can even carry the attack
setup in a backpack and move around to hunt down victims at

Session 4B: Wireless, Mobile, and IoT  CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

1102



strategic locations, at a total monetary cost of less than USD $100,
well within reach for mere script kiddies.

3 OUR COMPARISON FRAMEWORK
In this section, we present a framework for comparing the relative
robustness of supplicant configurations. We went through multiple
rounds of refinements in order to accommodate all the options
and subtleties of the mainstream OSs discussed in Section 4. We
are not aware of any prior work giving such a framework. Due to
space constraints, the implicit assumptions and exceptions of our
framework are presented in Appendix A.

3.1 Insight of our comparison framework
For comparing configurations, we introduce the notion of an ab-
stract security label ℓ that captures the abstracted connection at-
tributes of a given configuration. Such labels ℓ are drawn from a
strict partially ordered set L of labels. We resort to L being strict
partially ordered because if two abstract security labels ℓa and ℓb
both indicate susceptibility to attacks, in many cases it is not clear
whether ℓa or ℓb leads to a better outcome for the victim.

Given two configurations c1 and c2 which are mapped to labels
ℓ1 and ℓ2 correspondingly, we say c1 is more secure than c2 if and
only if ℓ2 <s ℓ1 (read, ℓ2 is less than ℓ1). Multiple configurations
(stemmed from the various UIs on different OSs) can be mapped to
the same abstract security label, so long as their abstracted connec-
tion attributes are equivalent.

3.2 Abstract security label
In our discussion, we consider ℓ ∈ L to be of the form ℓ =
(α , β ,γ ,δ ) and use it to capture the possible PEAP and EAP-TTLS
configurations that are considered in this work. The first element of
ℓ, α , is used to capture how the rejection of invalid certificates is
being performed. α ∈ {P, AM, N}, which stands for Programmatic,
Assisted Manual, and None, respectively. Some might question
why α is not a boolean variable and why we need to introduce AM,
besides P and N. Such a refinement is actually necessary because
some OSs (e.g., macOS and iOS) require the user to make the fi-
nal decision on whether to reject the received certificate, as we
will explain in Section 4. The second element, β , captures the trust
anchor used by α to establish the validity of the certificate. β ∈

{Sp., Sys., n/a}, which stands for Specific, System CA store,
and not applicable, respectively. Notice that α = N =⇒ β = n/a,
and not all OSs come with a UI that supports both the β = Spec.
and β = Sys. options. The third element, γ , denotes the way that
the server name is being checked, and γ ∈ {P, M, N}, which stands
for Programmatic, Manual, and None. Once again, support for γ
varies greatly among mainstream OSs. Finally, the fourth element,
δ ∈ {Ob., Cl.}, denotes whether the phase-2 authentication method
sends Obfuscated or Cleartext credentials. Not all OSs allow the
user to choose the preferred phase-2 method.

3.3 Strict partial ordering of security labels
A Hasse diagram showing all the possible configurations captured
by the abstract security label ℓ can be found in Figure 1. Nodes
in the diagram represent abstract security labels that connection

configurations can be mapped to, where the ones that might be sus-
ceptible to the ET credential theft are rectangular-shaped (red and
purple in color), and the ones that are not immediately vulnerable
are represented with rounded rectangles (blue in color). Nodes are
ranked according to their relative robustness, and a directed edge
from nodeA to node B means B <s A. The styles (and colors) of the
edges capture the degradation of security. A solid edge with solid
arrow (black in color) captures the notion of using a Specific trust
anchor is better than using the System CA store. This is related
to the possibility of some CAs getting compromised/going rogue,
which is a well documented concern when using the public key in-
frastructure (PKI) [42]. Abstractly, trusting only some specific CAs
can help reduce exposure to potentially compromised/rogue CAs
when compared to the case of trusting all the CAs included in the
system CA store, since in the prior case, an ET attacker will need
to target the specific CAs in order to launch a successful attack.

Meanwhile, a dotted edge with solid arrow (green in color) cap-
tures the notion that rejecting invalid certificates, for it be enforced
programmatically (α = P) or manually with machine assistance
(α = AM), is more secure than not rejecting invalid certificates at all
(α = N). The rationale behind is intuitive, as accepting certificates
that cannot be validated will enable the ET attack. Not properly
validating certificates is one of the most critical flaws of many TLS-
using systems, examples include Android banking apps [48] and a
variety of Web and messaging applications [35].

Similarly, a dashed edge with hollow arrow (purple in color)
captures the fact that some form of server name checking, whether
it is programmatic (γ = P) or manual (γ = M), is better than not
checking it at all (γ = N). This is yet another classic issue that often
gets overlooked in PKI-using systems [2, 31, 35, 39]: just because
the certificate can be validated does not mean the peer is indeed
the right entity. When γ = N, an attacker can get a certificate chain
for a domain under control from the same trust anchor, and then
use it to launch a successful ET attack.

Finally, a solid edge with hollow arrow (blue in color) captures
the idea of using a phase-2 authentication method that sends obfus-
cated credentials (δ = Ob.) is better than those that send cleartext
credentials (δ = Cl.). Notice that the scenario where the supplicant
configuration does not specify a particular phase-2 method is also
captured by δ = Cl. This is because in WPA2-Enterprise mode,
the authentication server gets to choose the phase-2 method. In
other words, from an adversarial perspective, a rational ET attacker
would definitely choose methods that are more advantageous (i.e.,
EAP-GTC and PAP) to get the victims’ passwords directly. This is es-
pecially important when using an already vulnerable configuration,
as it can mark the difference between allowing an ET attacker to
steal the password directly (rectangular-shaped nodes with diago-
nal cut corners in Figure 1), or some obfuscated credential (as in the
case of MSCHAPv2 1), which needs further dictionary/brute-force
attacks to reveal the actual password. Under this consideration,
even (N, n/a, N, Ob.) can potentially lead to a better outcome than
configurations like (P, Sys., N, Cl.) and (N, n/a., P, Cl.). In Fig-
ure 1, this special case is represented with a solid edge with hollow
arrow that is red in color.

1As discussed in Section 2.3.2, one can find the password hash at the cost of 256 [7],
but the complexity of finding the password depends on its length and composition.
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({P, AM}, Sp., {P, M}, Ob.)

({P, AM}, Sys., {P, M}, Ob.)

({P, AM}, Sp., {P, M}, Cl.)

({P, AM}, Sp., N, Ob.)

({P, AM}, Sys., {P, M}, Cl.)

({P, AM}, Sys., N, Cl.) (N, n/a, {P, M}, Cl.)

(N, n/a, {P, M}, Ob.) ({P, AM}, Sys., N, Ob.)

({P, AM}, Sp., N, Cl.) (N, n/a, N, Ob.)

(N, n/a, N, Cl.)

Blue edges: Ob. > Cl. for δ

Purple edges: {P, M} > N for γ

Black edges: Sp. > Sys. for β

Red edges: Ob. > Cl. for δ (special case)

Green edges: {P, M} > N for α

Blue nodes: no immediate attacks

Purple nodes: exploitability depends
on issuing policies of anchoring CAs

Red nodes: susceptible to ET attacks

α: rejection of invalid certs

β: trust anchor

γ: server name checking

δ: phase-2 method

Figure 1: Possible configurations, ordered in terms of robust-
ness. Rectangular nodes represent potential vulnerabilities.

4 MAKING SENSE OF THE OS BEHAVIORS
To the best of our knowledge, no previous work gave a systematiza-
tion of what WPA2-Enterprise configurations are supported by the
mainstream OSs. Hence, in order to be able to grade configuration
instructions, it is necessary to first understand the UI behavior of
each OS, as well as the actual configurations that they support. For
this, we evaluate each realizable configuration by launching an ET
attack using the set up discussed in Section 2.4.

We are primarily interested in how the design of UIs limit con-
figuration possibilities, and how the OS behaves under specific
configurations. All OSs tested in this section have native support
for both PEAP and EAP-TTLS, except for Windows 7, which only
supports PEAP out of the box, but third party plugins can be in-
stalled to add support for EAP-TTLS. A summary of the design
weaknesses identified through testing is shown in Table 1. Though
Linux is often not supported by TEIs, we discuss the issues of its
NetworkManager GUI in Appendix C.

4.1 Android
4.1.1 Configurations supported. For Android, various vendors of-
fer heavily customized UIs, so we base our discussion on the ones
that offer near-stock UIs (e.g. participants of Android One). A com-
parison of the configurations supported by Android can be found in
Fig. B2a in Appendix. In general, Android does not prompt the user
to inspect the server certificate and hostname (α , AM∧γ , M). We
also make a distinction between Android 7+ (Nougat and newer)
and 6- (Marshmallow and older), as the two have noticeably differ-
ent UI options in terms of Wi-Fi configuration.

First of all, for trust anchor, while it is possible to choose “Use
system certificates” (α = P∧β = Sys.) from the dropdownmenu on
Android 7+, Android 6- simply does not offer that option (β , Sys.).
However, Android 6- can actually perform certificate validation
using one specific trust anchor (α = P ∧ β = Sp.), given that the
user installs a CA certificate and sets it for use with Wi-Fi prior
to configuring. Also, the UI on Android 6- does not have an input
box for the user to type in the name of the authentication server
(γ , P), and given γ , M as discussed above, it only supports

configurations with γ = N. Both Android 6- and 7+ have a drop-
down menu for choosing either one specific inner authentication
method (δ = Ob. XOR δ = Cl., depending on the method chosen),
or to let the system decide (δ = Cl.).

4.1.2 Design weaknesses. We observed an interesting flaw in the
UI of Android 7+. When the user chooses “Use system certificates”
for the trust anchor, the UI will then require the user to type in
the expected name of the authentication server, before allowing
the user to connect (β = Sys. =⇒ γ = P). However, if the
user chooses a specific CA certificate as the trust anchor, the UI
will allow the user to connect without typing in a server name
(β = Sp. =⇒ γ = P XOR γ = N). We filed a bug report regarding
this discrepancy and the Google Android team confirmed it with a
moderate severity. CVE-2020-27055 has been assigned for this and
a fix has been released.

4.2 Chrome OS
4.2.1 Configurations supported. We base our analysis of Chrome
OS on v87, the latest at the time of writing. Most Chromebooks
receive rolling updates, and across recent versions (from v83 to v87)
we did not notice any meaningful differences in the configuration
UIs. The configurations supported by Chrome OS can be found in
Fig. B2b in Appendix. We found that for the purpose of configuring
Wi-Fi networks, Chrome OS is highly similar to Android 6-, albeit
with its own oddities. In general, Chrome OS also does not prompt
the user for manual inspection (α , AM ∧ γ , M), and it does not
have an input box for configuring server name checking (γ = N)
when either PEAP or EAP-TTLS is chosen as the phase-1 method.

Regarding certificate validation, specific CA certificates can be
installed and chosen as the trust anchor in a dropdown menu (α =
P ∧ β = Sp.). There is an option in the dropdown menu confusingly
named “Default”, which based on our testing, uses the system CA
store as the trust anchor (α = P ∧ β = Sys.). Another option
available in the dropdown menu is “Do not check”, which disables
the certificate validation completely (α = N).

4.2.2 Design weaknesses. Our testing found 4 design weaknesses
on ChromeOS. First, the lack of a server name input box is definitely
a UI design flaw that will lead to insecure configurations. Another
UI flaw that we found concerns the actual default option for the
trust anchor of certificate validation. If the user chooses to join
a WPA2-Enterprise network from the list of scanned SSIDs, then
“Default” (α = P∧ β = Sys.) will be chosen by the UI as the default
option. However, if one attempts to add a new network directly
(by manually typing in the SSID), then the “Do not check” option
(α = N) will be chosen by the UI by default. A more severe flaw on
Chrome OS is that, to our surprise, the enforcement of server name
checking (currently only possible through importing pre-configured
profiles), uses a substring matching logic. In other words, if one sets
the server name checking constraint to example.edu, a certificate
with the name example.edu.attacker.com will be considered by
Chrome OS as a match. Consequently, the server name checking
on Chrome OS is simply ineffective against impersonation attacks.
Finally, another issue concerns networks configured through side-
loading profiles. If a profile that relies on more than one embedded
CA certificate as the trust anchors (α = P ∧ β = Sp.) is imported,
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Table 1: Design weaknesses across OSs

OS Issues Implications
Android 6- The UI lacks an input box for specifying the correct server name of the certificate. Configurations vulnerable to ET attacks if commercial CAs are used as the trust anchor.

Android 7+ Server name becomes optional when a specific CA is chosen as the trust anchor. Possibility of insecure configurations if commercial CAs are used as trust anchor.

Chrome OS The UI lacks an input box for specifying the correct server name of the certificate. Configurations vulnerable to ET attacks if commercial CAs are used as the trust anchor.

Chrome OS Domain name checking (possible only via profiles) uses a substring matching logic. Attackers can easily obtain attack certificates which satisfy the name checking condition.

Chrome OS Inconsistent default setting for CA certificate depending on the UI entry points. Potential confusion and misconfiguration for users who do not understand the subtleties.

Chrome OS The UI shows “Do not check” after importing a profile with multiple CA certificates. Gives a misleading perception that the configuration is not validating the server certificate.

Windows 10 The short timeout hinders manual checking of the certificate thumbprint. Frustrating the users into continuing the connection without checking the thumbprint.

Windows 10 The certificate thumbprint is the SHA1 hash digest of the certificate. Resourceful attackers can compute and leverage hash collision for impersonation attacks.

Windows 7&10 By default, detailed configurations fall back to simple alerts and can be overridden. Users might ignore the alerts, render the original configuration pointless and open doors to attacks.

iOS The UI marks any server certificate as "Not Trusted" with a red-colored warning text. Confusing the users into blindly trusting any server certificates.

macOS Self-signed CA certificates in a pre-configured profile given full trusts after import. Installing profiles can open doors to many other attacks, e.g., MITM against HTTPS & IPSec.

and the user later wants to modify the settings of that connection,
the configuration UI would display “Do not check”, even though
the (P, Sp., _, _) behavior still persists under the hood. This could
create confusions with the users and mislead them into thinking
that the “Do not check” option (α = N) is recommended. We filed 4
separate bug reports regarding these issues and all were confirmed
by the Chrome OS developers. The missing input box issue has a
ranking of low severity, and the other 3 issues all got a ranking of
medium severity. CVE-2021-21212 has been assigned for the issue
of inconsistent default setting.

4.3 Windows
4.3.1 Configurations supported. We mainly consider Windows 10
and 7, as both of them currently have a sizable market share. Inter-
estingly, their UI behaviors are quite different. The configurations
supported by Windows 10 and 7 are shown in Fig. B1a and Fig. B1b
in Appendix. For both versions of Windows, there are 2 possible
UIs that can be used to setup Wi-Fi, which we refer to as the Sim-
ple UI and Traditional UI. In both cases, the inner authentication
method defaults to MSCHAPv2 (δ = Ob.). From the Simple UI, it
is not possible to choose a different phase-2 method, but on the
Traditional UI, additional methods like PAP and EAP-GTC can be
chosen if one first installs some third party plugins (δ = Cl.). Such
plugins are used quite extensively in certain countries/regions.

OnWindows 10, the Simple UI can be launched directly from the
Wi-Fi icon in the system tray. There are no checkboxes, dropdown
menus, or input boxes for the user to indicate the preferred trust
anchors and server names. Instead, it will ask if the user wants to
continue connecting through an in place prompt. Blindly continu-
ing means no server name checking would be performed (γ = N)
and no invalid certificates would be rejected (α = N). Alternatively,
the server identity can be confirmed by first clicking the “Show
certificate details” link in the prompt and then matching the dis-
played SHA-1 digest of the certificate against some known values
(SHA1(AM, Sp., M, Sp.)). Newer versions of Windows 10 (since ver-
sion 2004) also display the issuer and subject name of the server
certificate along side with the SHA-1 digest. While this makes the
UI more informative, however, without a prior validity check, those
names cannot be relied upon as they can be chosen arbitrarily by
an attacker when crafting certificates for impersonation attacks.

On the other hand, the simple UI of Windows 7 will not display
the hash digest of the server certificate, but instead has an implicit
α = P ∧ β = Sys. logic, that is, if the server certificate cannot be

validated by any of the trust anchors in the system CA store, it
will be automatically rejected. Only if the server certificate passed
through the initial validation check, then further alert windows
will be shown to allow the user to possibly check the name of
the server ceritifcate (γ = M) and the anchor of the chain of trust
(α = AM∧β = Sp.). It is also possible to just blindly continue without
inspecting the server name (γ = N) or the trust anchor shown on
the alert windows.

The traditional UI of Windows 10 and 7 can be invoked from
“Control Panel” and they are very similar. Both offer an optional in-
put box for the expected server name to be checked programatically
(γ = P), one checkbox for each trusted CA in the system CA store
for selecting the preferred trust anchors (β = Sp.), and a checkbox
for disabling certificate validation completely, which would also
disable hostname checking (α = N ∧ γ = N).

4.3.2 Design weaknesses. There are several issues that we iden-
tified with the design of the Windows 10 UI. First, regarding the
Simple UI, the reliance of SHA-1 digest alone as the basis for con-
firming server identity provides a questionable level of security, as
a collision attack against SHA-1 has already been demonstrated by
previous work [55]. Moreover, we found that the user is given a
meagre 20-second period to decide whether to continue with the
connection when using the Simple UI. When the system times out,
the user will have to reenter the username and password, and get
another 20-second opportunity to decide. Based on the personal
experience of our team members, it is nearly impossible to match
the SHA-1 digest (20 bytes each, encoded into 40 hexadecimal char-
acters for display) before timeout. This could lead to frustrations
and the user may end up blindly continuing without performing the
verification. We reported these 2 issues to the Microsoft Security
Response Center, but they dismissed our report on the grounds that
those appear to be product suggestions and are not vulnerabilities.

Finally, we note that on both Windows 10 and 7, there is a subtle
option on the Traditional UI that needs to be explicitly disabled
by the user in order to enforce the validation behavior specified
in the Traditional UI (e.g., α = P, γ = P, etc.). Otherwise, when
the OS receives a server certificate that is untrusted or contains
unexpected names, it will by default fall back to the Simple UI. This
is particularly detrimental for Windows 10, as unlike Windows 7,
it does not have an implicit α = P ∧ β = Sys. logic, and the SHA-1
digest on the Simple UI is prone to collision attacks. Unfortunately,
this subtle option is sometimes overlooked by instructions that we
evaluate in Section 5, leading to insecure configurations.
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4.4 macOS and iOS
4.4.1 Configurations supported. For macOS and iOS, we consider
version 10.15 and 13.6, respectively, which are the latest versions at
the time of writing. Despite aesthetic differences, the two are quite
similar in spirit when it comes to configuringWPA2-Enterprise. The
configuration and verification possibilities supported by the two are
basically the same, as shown in Figure B1c in Appendix. Without
the use of profiles, both macOS and iOS rely heavily on human
intervention for certificate validation and server name checking.
No drop-down menus or checkboxes are provided for indicating the
preferred phase-2 method, although both macOS and iOS support
a variety of methods under the hood (δ = Cl.). When a TLS tunnel
is established with a particular authentication server, an alert will
pop out prompting the user to verify the server certificate and the
user has to decide whether to continue or not.

On macOS, the alert window by default only shows the common
name of the server certificate, and this can be manually inspected
and considered in a rejection decision (γ = M), or completely ignored
(γ = N) before continuing. Additional information, including a
predetermined certificate validity and the CA certificates used to
form the chain of trust, will be shown only after the user clicks
the “Show Certificate” button. Interestingly, even if the system has
already determined a server certificate to be invalid, it will not be
programatically rejected (α , P), and the alert window will still be
shown, effectively delegating the rejection decision to the user. The
user can then decide to continue/stop the connection based on the
predetermined (in)validity (α = AM∧ β = Sys.), or blindly continue
without inspecting the validity information on the alert window,
in which case no invalid certificates will be rejected (α = N).

Moreover, there are two ways to upgrade the configuration. First,
the user can check both the predetermined validity and the issuer
name in the detailed information given on the alert window, and
then continues to connect only if the certificate is found to be valid
and the issuer name fits that of an expected CA (α = AM ∧ β = Sp.).
Another way to upgrade the configuration is to inspect the SHA-256
(and SHA-1) digests of the certificate, both of which can be found
when the user clicks on the “Details” button and scroll all the way
down to the bottom of the alert window.

4.4.2 Design weaknesses. We have identified 1 issue for iOS and 1
issue for macOS. For iOS, the determination of certificate validity
with system CA store seems to be broken, and it appears that all
server certificates, including those that are determined to be valid
on macOS, will always be marked as invalid. Consequently, the
only way to confirm the server identity is through verifying hash
digests of the server certificate. This bug has been mentioned in
some of the instructions that we surveyed in Section 5, and we filed
a report to Apple regarding this, but at the time of writing we have
not received any responses from Apple.

For macOS, we found that the CA certificates imported through
pre-configured profiles will be included in the system CA store,
which will affect the determination of certificate validity for other
WPA2-Enterprise networks in the future. More severely, self-signed
root CA certificates imported this way will be trusted by default
for all purposes beyond Wi-Fi, including secure mails (S/MIME),
Web browsing (TLS), IPSec, and code signing. In other words, im-
porting pre-configured Wi-Fi profiles embedded with self-signed

root CA certificates provides a covert pathway for injecting trusted
certificates useful for other attacks (e.g., TLS interception for break-
ing HTTPS). We successfully used a Linux wireless AP running
mitmproxy [22] to intercept HTTPS traffic from Safari and Fire-
fox on a MacBook that imported a Wi-Fi profile containing our
own self-signed root CA certificate. We reported this elevation of
trust to Apple but their product security team dismissed our report,
claiming that there is no security risk to users.

5 INSECUREWPA2-ENTERPRISE
CONFIGURATION INSTRUCTIONS

To evaluate the spread of problematic configuration instructions,
we conduct a large-scale study based on publicly accessible ones
that TEIs prescribe to their staffs and students. We also establish
links between the misguided designs of mainstream OSs and the
poor instructions found in the wild.

5.1 Instruction gathering and labeling
We first collected lists of TEIs from Wikipedia and lists of par-
ticipants from national/regional eduroam homepages (see [40]),
and consolidated a list of 7045 TEIs covering 54 countries/regions.
We then used Selenium WebDriver to crawl the domains of these
TEIs from Google. We crawled the top 8 Google search results for
"eduroam OR wifi OR WI-FI OR WLAN site:<domain>", in
an attempt to automatically discover URLs to Wi-Fi configuration
instructions. For each TEI, if none of those results seem relevant,
we would manually navigate to its homepage and use the internal
search there as a last resort. We only crawled results of Google
search but never scrapped any TEI websites programatically. If any
applicable Wi-Fi configuration instructions can be found, we would
then manually capture and archive them using a custom Chrome
extension, and then interpret them and assign security labels, based
on the framework introduced in Section 3 as well as the supported
configurations determined in Section 4. Out of the 7045 TEI consid-
ered, more than 5000 were investigated by 3 authors, and another
4 authors each investigated hundreds of TEIs. Separation of labor
was partly based on authors’ language abilities. Notice that not all
TEIs make their configuration instructions publicly accessible, and
not all instructions describe the configuration of WPA2-Enterprise.
We consider an instruction applicable if it mentions terminologies
like PEAP, TTLS, phase-2 methods, and certificates.

Our data gathering and labeling effort happened between July
2020 to January 2021. In the end we collected and graded 7275
applicable configuration instructions from 2061 TEIs (around 30%
of the TEIs considered). 3096 of the 7275 instructions came fromnon-
anglophone countries, though somemight be written in English.We
follow instructions in local languages if possible, since those tend to
be more informative. Top non-English languages in this set include
Chinese, Japanese, Korean, German, French, and Italian. We consult
Google Translate when necessary. The top 10 regions contributing
the largest number of TEIs and instructions/grades can be found in
Tables G5 and G6 in Appendix. Overall, US contributed the most
for both campus Wi-Fi and eduroam, but numerous schools there
still do not support eduroam. Many European schools use eduroam
as their sole Wi-Fi service, while TEIs in Asian regions tend to have
better support for dedicated campus Wi-Fi than eduroam.
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5.1.1 Tie-breaking and extrapolation. For each TEI, if multiple ver-
sions of instructions exist, we in general only consider the latest one.
Occasionally, a TEI might provide multiple instructions that are
endorsed equivalently for a specific OS (e.g., one based onWindows
10 Simple UI, another based on Traditional UI), and in those cases
we keep only the worst labels, because some users might choose
to follow the bad ones without understanding the intricacies. Also,
many instructions use screenshots to illustrate the steps that users
should follow, although sometimes the texts might contradict the
images. In such cases, we follow the textual description.

When we assign labels to instructions, we respect the OS (and
version) that each instruction is explicitly specified to be targeting,
however, in some cases it is necessary to extrapolate. The first
such case concerns different versions of Android. While we made a
distinction between Android 6- and 7+, many TEIs do not take that
into consideration when they prepare instructions, and oftentimes
they just provide one instruction for Android (without specifying
which version). Given such instructions, we would grade them for
both Android 6- and 7+, based on the UI restrictions discussed
in Section 4.1. Another case where we perform extrapolation is
when dealing with generic instructions. We assign labels based
on OS-specific instructions if they exist, however, sometimes TEIs
prescribe very generic instructions that are non-OS-specific. Given
such instructions, we extrapolate based on the default OS behavior
discussed in Section 4.

5.1.2 Ambiguity and threats to validity. The main challenge of
evaluating instructions is the ambiguity of natural languages. While
the OS-specific instructions tend to be relatively straightforward
to grade, the generic ones can sometimes be incredibly vague and
confusing. For example, some non-OS-specific instructions might
implicitly base their terminologies on one OS (e.g., "Unspecific",
an UI option only valid for Android 6-), and claim that the users can
configure similarly on other OSs. In those cases, we try our best
to match the given information, and imagine what a user would
do, given the default behaviors and UI restrictions discussed in
Section 4. This, however, is not a definitive prediction of what
might actually happen in real life. Also, some instructions provide a
link for downloading a CA certificate, without actually instructing
the users how to install it. For these cases, we give them the benefit
of the doubt and imagine the users would be able to properly install
the CA certificate (and use it as the trust anchor if applicable).

Moreover, some instructions casually mentioned information
that might be useful in performing certain checks, e.g., "When
prompted, click Trust, to trust the <server name> certificate." We
interpret this as clicking the Trust button directly (assuming the
<server name> clause is merely informational and not a precondition
to the click), but some might argue that this means the server name
is being checked (γ = M). Although we cannot guarantee perfect
labeling of instructions, to improve the overall consistency and reli-
ability of our results, one of our team members randomly sampled
and verified thousands of security labels against their correspond-
ing instructions, and the lead author independently checked all the
security labels assigned. Most of the labeling conflicts are due to
language ambiguity (similar to the examples given above), and con-
fusing cases were discussed among authors, with the corresponding
author making the final decision in conflict resolution.

Table 2: Instruction security (excluding profile installers)

Campus Wi-Fi eduroam

OS Insecure
Labels

Total
Labels

Insecure
Perc.

OS Insecure
Labels

Total
Labels

Insecure
Perc.

Windows 10 774 801 96.6% Windows 10 780 814 95.8%
Windows 7 663 725 91.4% Windows 7 624 692 90.2%
Android 7+ 888 990 89.7% Android 7+ 761 941 80.9%
Android 6- 961 992 96.9% Android 6- 840 941 89.3%
macOS 797 809 98.5% macOS 749 766 97.8%
iOS 908 916 99.1% iOS 799 812 98.4%

Chrome OS 243 251 96.8% Chrome OS 207 247 83.8%
Others 402 454 88.5% Others 368 484 76.0%
Total 5636 5938 94.9% Total 5128 5697 90.0%

Table 3: Majorities of labels assigned for each OS

Campus Wi-Fi
OS Total 1st Majority Perc. 2nd Majority Perc.

Windows 10 923 N, n/a, N, Ob. 81.6% Installer only 13.2%
Windows 7 863 P, Sys., N, Ob. 49.6% N, n/a, N, Ob. 27.2%
Android 7+ 1040 N, n/a, N, Ob. 44.0% N, n/a, N, Cl. 41.3%
Android 6- 1043 N, n/a, N, Ob. 49.1% N, n/a, N, Cl. 43.0%
macOS 893 N, n/a, N, Cl. 80.9% Installer only 9.41%
iOS 993 N, n/a, N, Cl. 81.1% N, n/a, M, Cl. 10.3%

Chrome OS 276 N, n/a, N, Ob. 34.8% P, Sys., N, Ob. 27.5%
eduroam

OS Total 1st Majority Perc. 2nd Majority Perc.
Windows 10 1187 N, n/a, N, Ob. 63.2% eduroam CAT only 23.6%
Windows 7 1054 P, Sys., N, Ob. 45.4% eduroam CAT only 25.6%
Android 7+ 1227 N, n/a, N, Ob. 33.9% N, n/a, N, Cl. 28.1%
Android 6- 1223 N, n/a, N, Ob. 38.4% N, n/a, N, Cl. 30.3%
macOS 1148 N, n/a, N, Cl. 58.4% eduroam CAT only 24.9%
iOS 1195 N, n/a, N, Cl. 57.0% eduroam CAT only 24.1%

Chrome OS 487 eduroam CAT only 42.1% P, Sys., N, Ob. 20.1%

5.2 Analysis of results
Each applicable instruction (e.g., a single Webpage/PDF) can cover
one or more OSs and can thus lead to multiple labels being as-
signed. For the 7275 applicable instructions collected, we assigned
a total of 14602 labels, 2967 of which indicate profile installers,
and 11635 are security labels for manual configurations follow-
ing our framework presented in Section 3. 243 TEIs mandate the
use of profile installers, and 1818 TEIs endorsed manual configura-
tions, 97.2% of which prescribed at least one insecure instruction
for one of the mainstream OSs. An OS-specific break down of the
security label assigned for manual configurations can be found
in Table 2. Not all schools have both a dedicated campus Wi-Fi and
eduroam, hence we separate the configuration instructions accord-
ingly. Overall, campus Wi-Fi instructions are slightly less secure
than their eduroam counterparts. Nevertheless, a vast majority of
both rely on manual configurations, and the percentages of inse-
cure labels are overwhelming. Another highlight from Table 2 is
that Android 7+ performed slightly better than the other OSs, and
we attribute this to its UI design, which gives the users a slightly
higher chance of ending up with a (P, Sys., P, _) configuration.
The rows of “Others” concern instructions for various OSs that
have relatively low market shares, including Windows 8, Linux
distributions, Blackberry and Symbian. Chrome OS is only sporadi-
cally supported among TEIs, primarily by schools in the US. For all
OSs considered, however, the majority of labels are rather insecure,
as shown in Table 3. Some examples of misguided instructions can
be found in Appendix D.
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We found that about 29% of the labels across all OSs are based
on generic, non-OS-specific instructions. Also, among all the An-
droid labels, more than 70% of them were from non-version-specific
instructions. These numbers suggest that authors of instructions
often want a one-size-fits-all solution, without carefully consid-
ering the technical subtleties of different versions of OSs. This is
particularly bad for Android, where an insecure instruction based
on old versions (e.g., without server name checking) could limit the
security of newer, better versions.

Further analysis of the data shows interesting patterns. We see
that only a tiny portion of instructions actually mandate checking
the hash digest of server certificates (less than 3% for Windows 10
and less than 2% for macOS and iOS). We attribute this to a low
awareness of its positive implications among authors of instructions
and the UI design of the OSs, as in all three cases the hash digest
is not shown to the user by default, hindering adoption. In fact,
on macOS and iOS, the digests are buried in a pile of auxiliary
information regarding the certificate, which might have contributed
to the even lower adoption percentage than Windows 10. Moreover,
the percentage of profile installers for eduroam ismore than doubled
on each OS when comparing to that of campus Wi-Fi. We attribute
this to the success of the CAT project. However, for both categories,
Android sees the lowest percentage of profile installers.

Also, we found that the purple nodes in Figure 1 are not very
common in the wild. Since Android 6- and Chrome OS do not have
an input box for server name, those are the best security labels
that they can achieve from the UI. Unfortunately, the percentage
observed is rather low (less than 3% for campus Wi-Fi, and less
than 9% for eduroam). Regarding the choice of phase-2 method on
Android and Chrome OS, MSCHAPv2 is much more prominent
than the other options, but a significant portion (more than 30%
for Android) of instructions left it unspecified. Together with the
fact that most do not configure proper certificate validation, this
leaves an enormous amount of cleartext passwords world-wide to
be stealable by an ET attacker.

The regional statistics for the various OSs considered can be
found in Table G7 to G9 in Appendix. The overall trends still hold,
though several regions, primarily European countries, rely more
on eduroam CAT and are less prone to insecure configurations.
For Android, the choice for phase-2 method also differs, with some
Asian countries/regions tend to favor δ = Cl. over δ = Ob.

6 ANALYSIS OF EDUROAM CAT PROFILES
To get a more complete picture of supplicant configurations, we
also collect and analyze the official eduroam CAT profiles that are
available to users. We choose to focus on eduroam CAT because a
significant number of TEIs recommend/mandate the use of CAT,
and its pre-configured profiles are publicly accessible online (https:
//cat.eduroam.org/). Some TEIs might employ similar tools from
other vendors for their campus Wi-Fi, but in those cases the users
would first need to connect to a guest network in order to download
the installers and profiles, making them difficult for us to obtain at
scale. Another advantage of focusing on CAT is that for each OS
that it supports, a standard format would be used to encapsulate
the profile. We can thus use standard text processing tools for the

analysis, and consult the corresponding documentation to obtain
the syntax and semantic meanings of the contents [1, 4–6].

We performed the data collection in January 2021, and in the
end we successfully crawled 3593 CAT configuration profiles for
each of the mainstream OSs considered in this study (Windows
10 has only 3592 downloadable profiles because one school does
not offer CAT profiles for it). These profiles are from 3300 unique
identity providers (IdPs)2. Sometimes a CAT profile can contain
the configuration of multiple Wi-Fi (and wired) networks. In most
cases, each organization runs an IdP for its users, but occasionally
several organizations share the same IdP (and thus one IdP can
be used in multiple profiles). Since a precise mapping between
organizations and IdPs is unavailable to us, in what follows we use
IdPs to approximate the organizations behind profiles.

A quick inspection shows that iOS andmacOS profiles are mostly
the same, with only minor differences in some internal payload
identifiers (which do not affect the security of the configurations),
and that macOS profiles sometimes have additional LAN config-
urations (on top of the WLAN ones), and thus we only consider
macOS (but not iOS) profiles. Android CAT profiles appear to be
quite similar across different versions of Android, and for simplicity
we focus on profiles for Android 10. Likewise, we only consider
profiles for Windows 10 as the ones for Windows 7 are quite similar.

We found that although CAT profiles in general lead to more
secure connection attributes (e.g., certificate validation is always
enabled) than their manual configuration counterparts, they are not
completely free from configuration problems. Specifically, there are
interesting discrepancies across profiles for different OSs, some of
which can lead to vulnerabilities and other usability issues. Names
of TEIs have been redacted to protect them from potential attacks.

6.1 No server name checking (γ = N)
The first issue we discovered is that not all CAT profiles contain
the information necessary for server name checking to happen. For
Windows 10, Android 10, and macOS, we found only one profile
without server name checking information. Since the resulting
configurations rely on an internal CA as the trust anchor, depending
on its issuing policy, it might not be possible for an ET attacker to
obtain a workable certificate.

For Chrome OS, however, the situation is more bleak. In total we
found 30 profiles without server name checking information. To
determine whether they would be vulnerable to an ET attacker, we
cross-referenced the anchoring CA certificates in such profiles with
the trusted root CA certificates in /etc/ssl/certs on a recent
installation of Ubuntu 20.04. 12 out of the 30 profiles rely on at
least one commonly trusted root CA certificate as the trust anchor
(Table E1 in Appendix). In other words, an attacker can simply
purchase a certificate chain from the corresponding anchoring CAs
for a domain under control, and then use it to launch the ET attack
to exploit these profiles and steal user credentials. For the other 18
profiles, the success of the ET attack once again depends upon the
issuing policies of their corresponding anchoring CAs.

Our findings on profiles without server name checking seem to
correlate with the fact that Chrome OS does not have a hostname
input box on its UI (Section 4.2.2), but short of interviewing the

2For the purpose of this paper, IdPs are logically equivalent to authentication servers.
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actual creator of those problematic Chrome OS profiles, we cannot
definitively prove causality.

6.2 Unspecific server names
Another requirement for server name checking is that the match-
ing constraint needs to be hierarchically specific. This is usually
achieved by either adding more subdomain labels if a hostname is
preferred, or taking the directory attributes (e.g., country, locality,
organization, etc.) into consideration. Using only a single string
without any directory or domain components as the server name
matching constraint is prone to collision, as an attacker can try to
obtain a certificate chain with the same server name from a differ-
ent country, and then use that to satisfy the matching constraints.
Some profiles contain multiple name matching constraints, and a
certificate name is considered to be a match when at least one of
the constraints is satisfied. Thus we only need to consider the most
permissive constraint as we focus on potential impersonation at-
tacks. Our analysis revealed several profiles with unspecific server
names that rely on commonly trusted CAs as the trust anchor (see
Table E2 in Appendix). Since the expected names are rather generic
for those profiles, an attacker can set up a similarly named entity
in a different country and obtain a workable certificate chain from
the same anchoring CAs, and then use that to launch the ET attack
against staffs and students of these TEIs.

6.3 Permissive hostname constraints
Another way to render server name checking ineffective is to use
overly permissive hostname constraints. For this, we searched for
hostname constraints that are less than 8 characters long, which
resulted in only tens of profiles for each OS. As some organizations
happen to own short domains, we manually filtered out those cases.

In the end, we found 20 Chrome OS profiles to have exceptionally
short and permissive hostnamematching constraints (e.g., TLDs like
.at, .br, .cz, .dk, etc.). After cross-referencing the anchoring CAs
in those profiles with the CA certificates in /etc/ssl/certs, we
determined 7 of them to be vulnerable (see Table E3 in Appendix).
Because their hostname matching constraints are quite permissive,
by purchasing a strategically chosen domain, an attacker can ob-
tain a certificate chain from the corresponding anchoring CA while
satisfying the hostname constraint relatively easily, and then a tar-
geted ET attack can be launched using that certificate. This attack is
made even easier if one considers the substring hostname matching
logic used by Chrome OS (Section 4.2.2). However, even if Chrome
OS fixes its matching logic in the future, these hostname constraints
still need to be tightened to secure the supplicant configurations.

For the other 13 Chrome OS profiles with permissive hostname
constraints, the difficulty of mounting the attack once again de-
pends upon the issuing policies of their anchoring CAs (which are
not part of /etc/ssl/certs, and most of them are internal CAs).
The same also applies to the macOS, Windows 10, and Android 10
profiles with permissive hostname constraints, as none of them use
commonly trusted root CA certificates as trust anchors.

6.4 Large number of certificates in profiles
Another interesting observation is that some profiles contain a large
number of certificates. About two-thirds of the profiles embed only

Table 4: Certificates in CAT profiles
mac / Chrome / Android 10

Unique = 1469
(Overall = 6060)

Windows 10
Unique = 1355
(Overall = 5734)

Parameter Count Perc. Count Perc.
RSA Public Key = 1024 bits 188 (331) 12.8% 186 (320) 13.7%
RSA Public Key > 1024 bits 1255 (5682) 85.4% 1161 (5399) 85.7%
Elliptic-curve Public Key 26 (47) 1.8% 8 (15) 0.6%

MD5-RSA Signature 29 (35) 2.0% 29 (30) 2.1%
SHA1-RSA Signature 676 (3032) 46.0% 636 (2860) 46.9%
SHA256-RSA Signature 678 (2207) 46.2% 628 (2102) 46.4%
SHA384-RSA Signature 31 (704) 2.1% 28 (695) 2.1%
SHA512-RSA Signature 32 (41) 2.1% 29 (38) 2.1%

SHA256-ECDSA Signature 23 (41) 1.6% 5 (9) 0.4%

Expired Certificates 210 (563) 14.3% 200 (528) 14.7%

Version 3 Certificates 1430 (6007) 97.3% 1318 (5693) 97.3%
Version 1 Certificates 39 (53) 2.7% 37 (41) 2.7%

CA Certificate 1298 (5868) 88.4% 1186 (5554) 87.5%
Non-CA Certificate 171 (192) 11.6% 169 (180) 12.5%

one anchoring certificate, and about 30% of the profiles embed 2− 5
certificates, but there are a few cases where the total number of
certificates embedded in a profile goes beyond a hundred.

Depending on the OS concerned, importing certificates from pro-
files would have different effects. For Chrome OS, these certificates
will be offered in a drop-down menu as possible trust anchors if
one configures another WPA2-Enterprise network in the future, so
the large number of imported certificates would cause a UI pollu-
tion but not detrimental to security, as they will not be counted in
the system CA store. On macOS, however, this is a major cause of
concern, because the imported CA certificates will be counted in
the system CA store, affecting the certificate validation of other
WPA2-Enterprise networks in the future. More importantly, the
self-signed root CA certificates imported would be given full trusts
for many different purposes, which can then be used to launch
other attacks, as discussed in Section 4.4.2.

6.5 Quality of certificates in CAT profiles
Finally, we also analyze the quality of the certificates embedded in
the CAT profiles. The results can be found in Table 4. We found that
short RSA modulus (e.g. ≤ 1024 bits) is not yet extinct in the WPA2-
Enterprise ecosystem, with about 5% of the certificates embedded
in CAT profiles still use one. Interestingly, despite the known weak-
ness in collision resistance [54, 57, 63], MD5-based signatures can
still be found on a few certificates. Similarly, SHA1 is also collision-
prone under various settings [44, 55, 56], but nearly half of the
certificates embedded in the CAT profiles have SHA1-based signa-
tures. The use of SHA256-based signatures is also prominent, but
SHA512-based signatures are very rare. Moreover, RSA is still the
overwhelmingly popular choice when it comes to digital signature,
and only a tiny portion of the certificates are signed using ECDSA.
Curiously, there are a few Version 1 certificates, and given that
certificate extensions were only introduced since version 3 of X.509,
whether these can actually be used as CA certificates would require
verification through out-of-band means [21]. Finally, about 3% of
the certificates are non-CA, and to our surprise, about 10% of the
certificates are expired. Embedding non-CA or expired certificates
in the profiles is counterproductive, as they do not help in building
a valid chain of trust.
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Table 5: TLS Session and Certificate parameters

Session Stats
Total Domains = 3637

Leaf Cert. Stats
Unique = 2701
(Overall = 3637)

CA Cert. Stats
Unique = 652

(Overall = 5300)
EAP Count Perc. Parameter Count ‡ Perc. Count ‡ Perc.
PEAP 3430 94.3% RSA Public Key = 1024 bits 158 (223) 5.9% 25 (87) 3.8%
TTLS 2451 67.4% RSA Public Key > 1024 bits 2535 (3406) 93.8% 621 (5201) 95.3%
Both 2202 60.5% Elliptic-curve Public Key 8 (8) 0.3% 6 (12) 0.9%

TLS Support
Version Count Perc. MD5-RSA Signature 7 (8) 0.3% 3 (3) 0.5%
SSLv3 15 0.4% SHA1-RSA Signature 324 (412) 12.0% 204 (1320) 31.3%
TLSv1 3577 98.3% SHA256-RSA Signature 2092 (2791) 77.4% 401 (2252) 61.5%
TLSv1.1 2579 70.9% SHA384-RSA Signature 200 (341) 7.4% 21 (1698) 3.2%
TLSv1.2 2643 72.7% SHA512-RSA Signature 71 (78) 2.6% 17 (18) 2.6%
TLSv1.3 59 1.6% SHA256-ECDSA Signature 7 (7) 0.3% 6 (9) 0.9%

TLS by Default
TLSv1 979 26.9% Expired Certificate 118 (162) 4.4% 67 (161) 10.3%
TLSv1.1 13 0.4%
TLSv1.2 2586 71.1% Version 3 Certificate 2669 (3598) 98.8% 650 (5298) 99.7%
TLSv1.3 59 1.6% Version 1 Certificate 32 (39) 1.2% 2 (2) 0.3%
Only TLSv1 Support = 968
Only TLSv1.1 Support = 1 Chain Verification Success 1635 (2280) 60.5% N/A
Only TLSv1.2 Support = 47 Chain Verification Failure 1066 (1357) 39.5% N/A

‡ Count for overall certificates are in ()

7 ANALYZING THE TLS PARAMETERS USED
BY AUTHENTICATION SERVERS

In this section, we collect and evaluate the different TLS parameters
used by the authentication servers in the context of eduroam.

7.1 Data Collection
Taking advantage of the roaming nature of eduroam, we used the
local eduroam access offered by our universities to perform this
measurement study. From multiple sources (see [40]) including the
public list of IdPs, the national/regional eduroam list of participants,
and results of Section 5, we curated a list of domains conjectured
to be providing authentication services for eduroam. We then tried
a collection of generic usernames (e.g., anonymous, admissions,
etc.) combined with possible subdomain prefixes (e.g., ad, mail),
and in a few cases actual email addresses. In the end, we found
usable usernames that allowed us to establish TLS tunnels via PEAP
or TTLS for 3637 domains. Since we are only interested in the
TLS parameters, we modified wpa_supplicant v2.9 [3] so that it
terminates the TLS handshake after receiving and archiving the
ServerHello and Certificate messages, which is also how we
determine whether an attempt was successful. Notice that for this
data collection, no actual user log-ins (phase-2 authentication)
were performed. Modifying wpa_supplicant also allows us to
extract and archive the encrypted certificate chains in TLSv1.3. In
order to test for deprecated versions of SSL, we also used older
versions of wpa_supplicant and OpenSSL whenever necessary.

7.2 Traffic Evaluation
We captured the TLS traffic from the authentication servers of 3637
eduroam domains worldwide (see Table F4 in Appendix for the top
20 contributing TLDs). Table 5 shows the overview of our results.

7.2.1 Analysis of Session parameters. We found that PEAP has
better support than EAP-TTLS (see the left side of Table 5). 94.3%
of the 3637 domains support PEAP whereas only 67.4% support
EAP-TTLS. We also thoroughly investigated the list of TLS versions

supported by the authentication servers of eduroam domains by
enforcing different TLS versions in the Client Hellomessage (see
TLS Support in Table 5). Legacy versions of TLS are susceptible
to various attacks under different models [15, 28, 51], and many
of them have been proposed to be deprecated by standardization
bodies [11, 46, 47, 59]. Much to our surprise, we encountered many
domains that still support older and/or deprecated versions of TLS
(e.g., from SSLv3 to TLSv1.1). However, when we offered all the TLS
versions in Client Hello packet (see TLS by Default in Table 5),
71.1% selected TLSv1.2 and 26.9% (979 domains) selected TLSv1 for
their sessions. Further investigation revealed 26.6% (968) domains
support only TLSv1. These statistics revealed that many of the
authentication servers of eduroam domains surveyed in our analysis
are still relying on old and weak versions of TLS.

7.2.2 Analysis of Certificate parameters. We also checked the pa-
rameters of X.509 certificates to evaluate the quality of the certifi-
cate chains used in the eduroam ecosystem. The rationale behind
this analysis is that if a remote authentication server sends an X.509
certificate chain consisting of weak/insecure parameters, it might
be possible for an attacker to compromise the all-important TLS
tunnel and steal user credentials. We collected in total 3637 X.509
certificate chains, which include 3637 leaf and 5300 (intermediate
and root) CA certificates. While many of them are reused across
different domains, we identified some certificates that are unique:
2701 leaf and 652 CA. Surprisingly, a significant number of these
certificates rely on someweak parameters that are prone to exploita-
tion (see Table 5). For instance, 5.9% of the unique leaf certificates
use short RSA moduli (e.g., 1024 bits), which are not recommended
[10]. 12% of the unique leaf certificates are signed with SHA1-RSA,
and 7 leaf certificates are signed with MD5-RSA, both of which
are susceptible to potential collision attacks [43, 44, 54–57, 63, 64].
Additionally, we found that a few domains use expired or version
1 certificates, both of which cannot provide an adequate level of
trust to the given certificate chains.

Chain verification status: We verified each X.509 certificate
chain using OpenSSL and observed that 39.5% of themwere rejected
with different reason codes. Out of the rejected chains, 5.3% have
expired certificates, and 1% have CA certificates that are invalid due
to incorrect X.509 extension values. 35.2% of the rejected chains are
missing some issuer certificates (code 20), 50.8%were built correctly
but the root is self-signed (code 19), and 7.7% are single-certificate
chains that are self-signed (code 18). The fact that so many chains
cannot be easily verified might be a reason why many TEIs instruct
their users to disable certificate validation completely.

Certificate lifespan:We also investigated the lifespan (in years)
of the 2701 unique leaf certificates and 652 unique CA certificates.
While most of the lifespans are typical (53.2% of the leaf certificates
are valid for 2-5 years and 69.2% of the CA certificates are valid
for 5-20 years), much to our surprise, we discovered a few domains
(1.5%) using leaf certificates with more than 20 years of validity and
1 domain with a negative lifespan. Similarly, 2.1% of CA certificates
have unusually long validity of more than 50 years, most of which
appears to be from self-signed CAs used by Identity and Access
Management (IAM) products.

7.2.3 Suspected cases of key reuse. By examining certificates and
public keys that are used by multiple TEIs, we identified several
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cases of suspected key reuse, which are reminiscent of the practice
embraced by some TLS-intercepting anti-virus software [24]. We
found clusters of TEIs in 3 countries (i.e., KR, CN, FR) that appear
to be using certificates or public keys generated by vendors of IAM
products. If the corresponding private keys are indeed shared across
different instances of the same product, an attacker might also
purchase such products and abuse the shared keys for launching
targeted ET attacks. To protect the organizations involved, we
redact the names of TEIs and vendors in the rest of this section.

First, we computed clusters based on identical certificate chains.
The largest cluster we found has 219 universities in Korea, all sent
the exact same chain, with the leaf certificate issued to *. .ac.kr.
It could be that University ( .ac.kr) is in
charge of providing authentication service to all these universi-
ties. The other large clusters with more than 20 domains are all
made of sibling/child subdomains that belong to the same organi-
zation (e.g., different academic departments or affiliated colleges
of a university, or different universities in a national alliance), and
thus they might reasonably share the same authentication server.
However, we found a cluster made of 18 universities in China, with
the same server certificate issued to C=FR;ST=Radius;O=Example
Inc.;CN=Example Server Certificate, and both the CA and
server certificates had expired back in 2017. It is not clear to us
whether these schools are simply sharing the same authentication
server or reusing the same private key.

Additionally, we noticed a cluster made of 17 universities in
China, with the leaf certificate issued to .com.cn, which
is a domain owned by a Chinese vendor of networking equipment.
Based on the vendor’s documentation, this certificate seems to be
coming from one of its IAM software packages. Similarly, there is
a cluster made of 12 universities in Korea, with the leaf certificate
issued to C=KR;ST=Seoul;L= ;O= ;OU=network;
CN= Root CA, which seems to be coming from an IAM
server product developed by a Korean vendor. We suspect these are
cases of key reuse, but cannot prove them definitively at this point.
If our suspicion turns out to be correct, the staffs and students of
these 29 schools could be susceptible to ET attacks, regardless of
their supplicant configurations.

Finally, we also computed clusters of domains that had the same
public key on the leaf certificate, and compared them with the clus-
ters that had identical certificate chains. Different certificate chains
that have the same leaf public key is highly indicative of possible
cases of key reuse, as the same authentication server would most
likely send the same chain every time. In the end, we found 3 inter-
esting cases. The largest cluster among the 3 is made of 10 Korean
universities, where the CA certificate remains the same (which lasts
till year 2111), and the leaf certificates were all issued to the same en-
tity (C=KR;ST=Seoul;L==Seoul;O= ;OU= ;
CN= CA SERVER), but they have different expiration dates
(all with a 20-year validity period). Those seem to be coming from
IAM products of another Korean vendor, which we believe could
be an additional instance of private key reuse. Furthermore, we
found 4 universities in China to be using the same server public
key. Their chains differ because some also sent the CA certificate
during TLS handshake, but some did not. Interestingly the name of
the leaf certificates is once again .com.cn (same as the
cluster of 17 universities discussed above), but these are all expired

in September 2020. Nevertheless, this suggests that our suspicions
might be correct. Another cluster that gained new membership is
made of 3 French schools, where the name of the leaf certificate is

.network, which seems to be a domain owned
by a French Wi-Fi solution provider. The chains differ because both
the leaf and CA certificates were different, but the server public
key remains the same, which we believe could be another case of
key reuse.

8 DISCUSSION
8.1 Responsible disclosure
As discussed in Section 4, we have responsibly reported the OS
design weaknesses to the corresponding vendors. While Microsoft
and Apple dismissed our reports, Google already has fixes planned
for both Chrome OS and Android. The CAT profile issues discussed
in Section 6 have also been disclosed to the affected TEIs. Some
replied saying that they fixed the issues following our reports, while
some said they are ditching eduroam CAT and have removed the
profiles completely. Some acknowledged but dismissed the reported
weaknesses claiming the probability of exploit is low. Some took
our reports more seriously and had further discussions with us
and an engineer of eduroam. A problem faced by some TEIs is that
Chrome OS can only handle a set of names when matching subject
alternative names but not for subject names. However, those TEIs
have multiple servers with subject names that belong to different
third/second-level domains, and thus they resort to using a very
permissive hostname constraint (e.g., a TLD) in their profiles, which
contributed to the findings discussed in Section 6.2 and 6.3. This
is yet another example of poor OS designs hurting user security.
We have relayed these deployment challenges back to the Chrome
OS team and they are now considering adding new parameters in
the design of their profile format to facilitate name checking. For
the suspected cases of key reuse (Section 7.2.3), we contacted the
IAM vendors but received no responses. After 30 days, we then
contacted the affected TEIs. Two schools acknowledged our findings
and changed their keys and certificates following our reports. For
the problematic configuration instructions (Section 5), we prepared
sample instructions recommending good practices that should be
adopted, and have already shared with the affected TEIs. To improve
the potential impact of our reports, we manually locate the contact
methods of the IT staffs in charge of the instructions/profiles. Each
report is tailor-made in accordance with the security labels assigned
to the instructions (Section 5), including the explanation of issues
as well as the suggested fixes. We finished the disclosure process
in early August 2021. We managed to contact 1732 TEIs which
prescribed insecuremanual configuration instructions, and received
48 acknowledgments a month later. Some TEIs have updated their
instructions following our reports.

8.2 Suggestions for improving security
Based on our results, wemake the following suggestions for improv-
ing the security ofWPA2-Enterprise. First, the use of pre-configured
profiles should be encouraged, as the overall quality of the resulting
configurations tend to be significantly higher (see Section 6), and
it helps to prevent human errors from Wi-Fi users. Second, OS
vendors need to revamp their designs of the Wi-Fi configuration UI.
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Insecure options should be made difficult to apply or even removed
completely. Relying on human intervention (e.g., iOS and macOS)
is generally a bad idea, and the design of Android 7+ has merits as
it increases the chance of arriving at a secure configuration (see
Section 5.2). Third, to reduce the impact of ET attacks, TEIs should
consider to use multi-factor authentication to protect services that
share SSO credentials with Wi-Fi, or use separate (instead of SSO)
credentials for Wi-Fi. Finally, we question the merits of using the
X.509 PKI inWPA2-Enterprise. We argue that Wi-Fi does not need a
scalable authentication solution like the X.509 PKI, which is known
to be difficult to implement and deploy correctly. The current design
seems to be inheriting all of the PKI’s complexity and deployment
challenges for no apparent benefits. We conjecture that one might
be better off with a simpler means of server authentication, but we
leave the exploration of that design space for future work.

8.3 Ethical considerations
We take the following ethical considerations into account during
our study. First, we manually retrieve configuration instructions
from TEIs without programmatic scraping of their websites, thus
robots.txt does not apply. Second, we redact names of TEIs in our
results, as some of the weaknesses might still persist. Third, when
collecting TLS parameters from eduroam authentication servers, we
do not complete the TLS handshakes and never attempt any actual
user log-ins. For 223 out of the 3637 successfully probed eduroam
domains, we had to use actual user email addresses, which we col-
lected from Google Scholar and IEEE Xplorer. We conclude this use
of email addresses is highly unlikely to cause harms to the users
based on the following considerations. When authenticating to
eduroam, the phase-1 traffic is not encrypted, and the outer identity
can be snooped by the host institute (if roaming) and eavesdroppers
within range. Some schools encourage the use of anonymous outer
identity because of this. In an ideal world, our data collection should
succeed with only anonymous identities. However, we noticed that
some servers perform a legitimacy check on the outer identity be-
fore proceeding to TLS handshake. Thus in an attempt to increase
coverage, we try real email addresses in cases where generic ac-
counts did not work. Since the outer identity is an unauthenticated
input, the account owners can repudiate ever initiating the phase-1
traffic when phase-2 authentication is unsuccessful, which is guar-
anteed by our aborted TLS handshakes. This should pose little to
no risk to the corresponding users. Over the data collection period,
our probing only incurs an infrequent, negligible amount of traffic
(a few partial TLS handshakes) to the TEIs’ authentication servers,
which should not cause any disruption to their benign services.

9 RELATEDWORK
Given its importance, implementations and deployments of TLS
have gone through extensive scrutiny over the years [14, 15, 25, 27,
32, 37, 45, 53]. TLS typically relies on X.509 certificates for server
authentication, which is itself tricky to implement and configure
correctly [17, 19, 20, 35, 41, 58]. Various appliances intercept TLS for
different reasons, though many were found to be hurting security
due to the use of broken ciphers and improper validation of certifi-
cates [24, 26, 29, 29, 62]. Some of these results inspired the design
of our measurement study presented in Sections 6 and 7. Although

enterprise Wi-Fi was shown to be vulnerable to different attacks
under various settings [12, 13, 16, 18, 49, 60, 61], to the best of our
knowledge, this is the most extensive measurement study to date
covering different aspects of supplicant and server configurations,
and the first to establish links between the misguided UI designs of
mainstream OSs and poor supplicant configurations. Our results
also suggest that awareness of the ET attack remains low among
practitioners, despite years of academic research on the topic.

10 CONCLUSION
In this paper, we presented a multifaceted study of the WPA2-
Enterprise ecosystem.We first proposed a framework for comparing
the security of WPA2-Enterprise configurations. We then utilized
this framework to evaluate the realizable configurations supported
by the UIs of mainstream OSs and discovered many design weak-
nesses that can negatively impact security. Moreover, we conducted
a large-scale evaluation of 7275 configuration instructions from
2061 TEIs and observed that 85.7% TEIs were prone to credential
thefts on at least one OS. We also analyzed 3593 eduroam CAT
profiles and discovered additional configuration issues. Finally, we
collected and evaluated the TLS parameters used by the authenti-
cation servers of 3637 eduroam domains, and identified numerous
security issues including the use of weak signature algorithms and
suspected cases of key reuse. The results of our study show that the
WPA2-Enterprise ecosystem has numerous security holes caused
by poor supplicant and server configurations. Vendors, IT adminis-
trators and users all need to do their part in order to fully realize
the security promises of WPA2-Enterprise.
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A ASSUMPTIONS AND CONSIDERATIONS OF
OUR COMPARISON FRAMEWORK

A.1 Trust anchors and issuance policies
Note that in order to keep our framework concise, we do not enu-
merate the number of trust anchors, and we do not compare the
trustworthiness of different CAs. We acknowledge that not all CAs
follow the same set of issuance policies, and some CAs might be eas-
ier to compromise than the others. Also because of this, the policies
that a CA adhere to in its daily operations will have a significant
influence over the actual security of configurations with β = Sp..
Certificate validation can be rendered pointless if the specified trust
anchors contain a CA that will issue any certificates to arbitrary
entities, including potential attackers. On the other extreme, if one
unique CA is specified as the sole trust anchor, and this turns out
to be a dedicated CA that will only sign the certificate used by
the authentication server but nothing else, then even supposedly
vulnerable configurations (the four of (_, Sp., N, _)) might turn
out to be safe from the ET attack, as the attacker will be unable
to obtain a workable certificate. This is also why those 4 nodes
are colored purple in Figure 1, to denote the fact that the actual
success of the attack depends on the policies and practices of the
specified trust anchors. This consideration is particularly important
for OSs that do not support server name checking (γ = N), as a ded-
icated CA could be the only means for achieving secure supplicant
configurations.

A.2 Phase-2 methods
Similarly, when we rank (δ = Ob.) to be better than (δ = Cl.),
we only make the distinction on whether the credentials are sent
in cleartext, and refrain from having a fine-grained comparison
on the security of possible obfuscation algorithms (e.g. different
hash digests and ciphers), as doing so will make the framework
unnecessarily complex, especially when only a handful of phase-2
methods are actually getting deployed at the time of writing.

A.3 Usability
Also note that in Figure 1, nodes are ranked only in terms of secu-
rity, not usability. For certificate validation, while programmatically
rejecting invalid ones (α = P) might put less burdens on the user,
given the same set of trust anchors and a careful user, we assume
that the assisted manual mode of rejection (α = AM) can be just as
secure. Similarly, given a user who faithfully and correctly carry out
the necessary string comparison, we assume that checking server-
names manually (γ = M) can be as secure as programmatically
(γ = P), even though the latter one might be more user friendly. We
reckon that proper support for Unicode and wildcard characters in
name matching can be tricky even when it is done programmat-
ically [17, 19, 52], and in the most direct form of γ = M where a

human is required to perform the string matching, it might be sus-
ceptible to script spoofing attacks through confusing homoglyphs
(e.g., with Cyrillic characters), though this depends on the font of
the UI and how the strings are preprocessed for display, and can
potentially be ameliorated by showing encoded derivatives or hash
digests of the strings instead. In the spirit of keeping the framework
generic, we do not enumerate or compare such details in how server
name matching can be enforced.

A.4 Different shades of (AM, Sp., M, _)
Some OSs might show the hash digests (also known as the finger-
prints or thumbprints) of the server certificate computed using var-
ious hash algorithms, and configuration instructions might request
the users to verify some or all of them. Since each of the hash digests
is computed by the OS over the entire server certificate including
the names and signature, manually matching the hash digest against
an expected values fits our definition of α = AM ∧ β = Sp. ∧ γ = M,
as the rejection of invalid server certificates is performed manually
with some programmatic assistance (computing the hash), the trust
anchor is specific (directly at the server certificate level), and the
server name is also checked manually. Thus, matching the hash
digests can be seen as a relaxed version of (AM, Sp., M, _), where
instead of an exact match of the validity, trust anchor and name
of the server certificate, a relaxed matching logic (inexact due to
potential hash collision) is being used. To keep our framework
simple, we do not enumerate all possible combinations of hash al-
gorithms. Instead, we allow the configurations of (AM, Sp., M, _) to
be qualified further by the hash digests being matched, for instance,
SHA1(AM, Sp., M, _) if only a SHA1 digest is being matched, and
SHA1&SHA256(AM, Sp., M, _) if both SHA1 and SHA256 digests are
being matched. The possible combinations of hash algorithms and
choice of phase-2 method vary across versions of mainstream OSs.

B CONFIGURATIONS SUPPORTED BY THE UI
OF DIFFERENT OPERATING SYSTEMS

The abstract security labels of configurations supported by the UIs
of Android, Chrome OS, Windows 10, Windows 7, and macOS &
iOS are given as Hasse diagrams in Figures B2a, B2b, B1a, B1b, and
B1c, respectively. At the time of testing, configurations supported
by Android 6- are also directly configurable on Android 7+. For
Windows 10 and 7, configurations in Simple UI with α = AM or
γ = M are not directly configurable in the Traditional UI, but can be
implicitly inherited when fall back happens (Section 4.3.2). Config-
urations in the Simple UI of Windows 10 and 7 with α , AM∧γ , M
are directly configurable in the Traditional UI. Currently, the best
configuration of Windows 10 Simple UI (AM, Sp., M, Ob.) is implic-
itly qualified by SHA1(), and the best configuration of macOS &
iOS (AM, Sp., M, Cl.) can be further qualified by the combination of
hash digests being checked (see Appendix A.4 for details). Since the
experiments for determining the supported configurations were
conducted in 2020, new OS updates might not exactly follow these
diagrams (e.g., fixing CVE-2020-27055 would imply Android no
longer supports (P, Sp., N, _)). Also, the use of pre-configured pro-
files, for example through eduroam CAT (Section 6), can sometimes
unlock additional configurations that are not directly configurable
via the UIs.
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Windows 10 Traditional UI

Windows 10 Simple UI

(P, Sys., N, Ob.)

(N, n/a, N, Ob.)

(P, Sp., P, Ob.)

(P, Sys., P, Ob.)(P, Sp., N, Ob.)

(N, n/a, M, Ob.)

(AM, Sp., M, Ob.)

(a)

Windows 7 Traditional UI

Windows 7 Simple UI

(P, Sys., M, Ob.) (P, Sys., N, Ob.) (N, n/a, N, Ob.)

(P, Sp., P, Ob.) (P, Sys., P, Ob.)

(AM, Sp., N, Ob.)

(P, Sp., N, Ob.)

(AM, Sp., M, Ob.)

(b)

macOS & iOS UI

(AM, Sp., M, Cl.)

(AM, Sys., M, Cl.) (AM, Sp., N, Cl.)

(AM, Sys., N, Cl.)(N, n/a, M, Cl.)

(N, n/a, N, Cl.)

(c)

Figure B1: Possible configurations on Windows 10, Windows 7 and macOS & iOS

Android 7+ UI

Android 6- UI

(P, Sp., P, Ob.)

(P, Sys., P, Ob.)

(P, Sp., P, Cl.)

(P, Sp., N, Ob.)

(P, Sys., P, Cl.)

(P, Sp., N, Cl.) (N, n/a, N, Cl.)

(N, n/a, N, Ob.)

(a)

Chrome OS UI

(P, Sys., N, Ob.) (N, n/a, N, Ob.)

(P, Sys., N, Cl.) (N, n/a, N, Cl.)

(P, Sp., N, Ob.) (P, Sp., N, Cl.)

(b)

Figure B2: Possible configurations on Android, Chrome OS

C EVALUATING CONFIGURATION UI OF
LINUX DISTRIBUTIONS

For Linux, there are many distributions and supplicant implemen-
tations with different GUIs available, and some users might pre-
fer to write configuration files directly with a text editor, so it is
difficult to have a general discussion covering all cases. Collec-
tively Linux owns a tiny share of the consumer market, thus most
schools do not offer technical support to Linux users. Based on
the limited number of configuration instructions for Linux that we
have found (Section 5), the most popular Wi-Fi configuration GUI
on Linux seems to be nm-connection-editor, which is part of
network-manager-applet, a GTK front end of NetworkManager
that can run on various desktop environments (e.g., Xfce, GNOME,
Budgie, etc.). We refrain from a detailed discussion on the configura-
tions supported by nm-connection-editor due to space constraint,
however, there are two points worth highlighting. First, just like An-
droid 6- and Chrome OS, old versions of nm-connection-editor

do not have the input box for user to enter the expected hostname,
which still affects certain long-term support distributions in produc-
tion environments (e.g., Ubuntu 16.04 LTS). Second, although that
input box was introduced since version 1.8.2 (released in July 2017),
for all versions up to and including 1.18.0 (the most recent one at
the time of writing), it has always been an optional input that users
can simply ignore, without getting any warnings or error messages
from the UI. Consequently, when it comes to WPA2-Enterprise
connections, it is possible that many Linux users might also be
susceptible to ET attacks.

D SAMPLES OF MISGUIDED INSTRUCTIONS
Here we give a few samples of misguided instructions. Depending
on which OS they are targeting, all of these instructions are mapped
to a security label of either (N, n/a, N, Ob.) or (N, n/a, N, Cl.). In
many cases, instructions are focused on only benign scenarios,
instead of educating users proper exception handling. Sometimes
the instruction also casually dismiss the threats due to insecure
configurations, with absolutely no regards to the possibility of ET
attacks. The iOS examples below show evidence of the broken
certificate validity alert leads to bad instructions and hurts the
security of its users. One example below apparently confused serial
number with the hash digest (fingerprint) of certificate.

.edu, campusWi-Fi on Android: “ CA certificate - Don’t validate (the network

is providing the certificate. Ignore messages about the connection not being private; you

are connecting to a known, trusted network) ”

.edu, campus Wi-Fi on Android: “ For CA Certificate: Click the drop-

down and choose “Do not Validate”. Your connection WILL BE secure! ”

.edu, campus Wi-Fi on Android: “ For CA certificate leave as N/A. Note:

Android 9/Pie users will see a notice indicating the connection is not secure. This may be

ignored as a certificate is provided by the wireless controllers. ”

.edu, campus Wi-Fi on Windows 10: “ Windows will notify you that it

can’t verify the server’s identity. It is safe to click connect. ”

.edu, campus Wi-Fi on Windows 10: “ Joining the Wireless

for the first time will present a certificate warning that reads as rather benign on Apple

iOS, Mac OS X and Android devices, but worded in a very dire manner for Windows

clients. The key is to connect. Accept the certificate and log in using your eID and

password. ”
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.edu, eduroam on macOS and iOS “ Next you will see a Certificate, press

Accept to accept the certificate even though it is unverified. University provides

this certificate to allow you to connect and it has been verified. ”

.edu, campus Wi-Fi on iOS: “ Step 5: Select ‘Trust’ in the upper right

hand corner for the Certificate. Note: iOS will think this certificate is not trusted – it is

ok to trust this! ”

.sg, campusWi-Fi on iOS: “ Verify the certificate server ends in nus.edu.sg
and the certificate is from thawte Primary Root CA. Don’t be alarmed if the page shows

certificate Not Verified. Accept the certificate and proceed. ”

.za, eduroam on iOS: “ When asked to accept the certificate, tap View Cer-

tificate Details then More Details. Check that the certificate was issued by DigiCert and

that the serial number is 0 D ”

E FINDINGS ONWEAK CAT PROFILES
Table E1 to E3 show the findings discussed in Section 6.1 to 6.3. The
names of the IdP have been redacted to protect the corresponding
TEIs from potential attacks.

Table E1: Vulnerable Chrome OS CAT profiles due to γ = N

IdP (ISO 3166-1-Alpha-2) Anchoring CA(s)

(AU)
VeriSign Class 3 Public Primary CA - G5
QuoVadis Root CA 2 G3

(UK) QuoVadis Root CA 2 G3

(CA) Entrust Root CA - G2

(IE) DigiCert Assured ID Root CA

(IT) DigiCert Assured ID Root CA

(AT)
Comodo AAA Certificate Services
DigiCert High Assurance EV Root CA
DigiCert Assured ID Root CA

(FR) DigiCert Assured ID Root CA

(TR) Go Daddy Class 2 CA

(UK) QuoVadis Root CA 2 G3

(US) GlobalSign Root CA - R3

(US) DigiCert High Assurance EV Root CA

(FR) Comodo AAA Certificate Services

Table E2: CAT profiles with unspecific server names

IdP (ISO 3166-1-Alpha-2) matching Anchoring CA(s)

(GR) † “ Server
Certificate”

DigiCert Assured ID Root CA

(US) ‡ “radius1” GlobalSign Root CA

(AU) ‡ “cit-ias-ml1”
VeriSign Class 3 Public Primary CA - G5
QuoVadis Root CA 2 G3
QuoVadis Root CA 2

† Applicable to Chrome OS, Windows 10, macOS, and Android 10
‡ Applicable to Windows 10, macOS, and Android 10

Table E3: Vulnerable ChromeOSCAT profiles due to permis-
sive hostname constraints

IdP (ISO 3166-1-Alpha2) matching Anchoring CA(s)

(BE) † t.be DigiCert Assured ID Root CA
(NO) .no Comodo AAA Certificate Services
(FR) .fr DigiCert Assured ID Root CA
(UK) .ac.uk QuoVadis Root CA 2 G3
(AT) .at Comodo AAA Certificate Services

† 3 profiles under the same IdP

F STATISTICS OF THE EDUROAM IDP
SERVERS MEASURED

Table F4 shows the top 20 TLDs of the 3637 eduroam domains that
we successfully measured during the data collection discussed in
Section 7.

Table F4: Top 20 TLDs of eduroam domains measured

TLD Count TLD Count TLD Count TLD Count
edu 602 de 184 ca 119 be 72
kr 277 hr 145 si 107 ch 66
uk 261 nl 142 it 80 cz 65
jp 242 es 133 br 78 pt 59
fr 212 cn 129 gr 75 at 46

G REGIONAL STATISTICS OF INSTRUCTIONS
COLLECTED

Table G5 shows the top 10 regions with the most number of TEIs
having applicable instructions, and Table G6 shows the top 10
regions that contributed the most number of instructions collected
and labels assigned in Section 5. Each TEI might have multiple
instructions, to cover all of its supported OSs. Each instruction can
lead to multiple labels being assigned, depending on the OSs that it
covers. Table G7 to G9 shows the majorities of labels assigned for
the mainstreamOSs considered, broken down based on each of their
own top 10 contributing regions. We refrain from showing the table
of regional majorities for Chrome OS for the sake of space. Most of
its campusWi-Fi instructions came from US schools, and most of its
eduroam instructions came from European schools recommending
the use of eduroam CAT, thus in both cases, the majorities for
Chrome OS basically follow the results shown in Table 3.

Table G5: Top 10 regions with the highest number of TEIs
having applicable instructions

ISO 3166- 1-Alpha-2 No. of TEIs ISO 3166- 1-Alpha-2 No. of TEIs
US 845 KR 94
DE 163 FR 69
GB 130 IT 66
JP 115 CA 66
CN 108 TW 59

Table G6: Top 10 regions with the highest number of instruc-
tions/labels

Campus Wi-Fi eduroam Campus Wi-Fi eduroam
ISO 3166-
1-Alpha-2

No. of
Instructions

ISO 3166-
1-Alpha-2

No. of
Instructions

ISO 3166-
1-Alpha-2

No. of
Labels

ISO 3166-
1-Alpha-2

No. of
Labels

US 1907 US 823 US 3689 US 2030
JP 242 DE 612 KR 494 DE 1052
KR 240 GB 405 JP 383 GB 817
CA 197 CA 195 CA 298 JP 507
TW 166 FR 193 TW 267 FR 464
DE 113 JP 162 CN 203 CN 419
IT 103 CN 125 DE 174 CA 383
TH 77 IT 125 IT 147 IT 343
HK 71 AU 101 TH 107 AU 214
CN 60 AT 85 HK 104 IE 182
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Table G7: Majorities of labels assigned for Windows 10 and Windows 7 by region

Windows 10 Campus Wi-Fi
ISO 3166-1-Alpha-2 Total 1st Majority Perc. 2nd Majority Perc.

US 531 N, n/a, N, Ob. 82.5% Installer only 13.2%
KR 75 N, n/a, N, Ob. 57.3% Installer only 42.7%
JP 58 N, n/a, N, Ob. 86.2% SHA-1 FP 12.1%
CA 39 N, n/a, N, Ob. 87.2% Installer only 12.8%
TW 36 N, n/a, N, Ob. 86.1% Installer only 13.9%
CN 28 N, n/a, N, Ob. 96.4% Installer only 3.57%
DE 25 N, n/a, N, Ob. 84.0% SHA-1 FP 12.0%
IT 18 N, n/a, N, Ob. 83.3% Installer only 11.1%
HK 16 N, n/a, N, Ob. 87.5% Installer only 6.25%
AU 13 N, n/a, N, Ob. 69.2% N, n/a, M, Ob. 23.1%

Windows 10 eduroam
ISO 3166-1-Alpha-2 Total 1st Majority Perc. 2nd Majority Perc.

US 311 N, n/a, N, Ob. 67.2% Installer (not CAT) only 15.1%
DE 152 eduroam CAT only 44.1% N, n/a, N, Ob. 41.4%
GB 116 N, n/a, N, Ob. 54.3% eduroam CAT only 32.8%
JP 85 N, n/a, N, Ob. 85.9% SHA-1 FP 5.88%
FR 64 eduroam CAT only 50.0% N, n/a, N, Ob. 43.8%
CN 59 N, n/a, N, Ob. 96.6% Installer (not CAT) only 3.39%
CA 56 N, n/a, N, Ob. 76.8% eduroam CAT only 17.9%
IT 50 N, n/a, N, Ob. 50.0% eduroam CAT only 48.0%
AU 29 N, n/a, N, Ob. 82.8% N, n/a, M, Ob. 10.3%
IE 26 N, n/a, N, Ob. 53.8% eduroam CAT only 42.3%

Windows 7 Campus Wi-Fi
ISO 3166-1-Alpha-2 Total 1st Majority Perc. 2nd Majority Perc.

US 492 P, Sys., N, Ob. 61.4% N, n/a, N, Ob. 19.5%
KR 79 Installer only 58.2% N, n/a, N, Ob. 34.2%
TW 37 N, n/a, N, Ob. 56.8% P, Sys., N, Ob. 32.4%
JP 36 N, n/a, N, Ob. 41.7% P, Sys., N, Ob. 38.9%
CA 36 P, Sys., N, Ob. 44.4% N, n/a, N, Ob. 22.2%
CN 30 N, n/a, N, Ob. 53.3% P, Sys., N, Ob. 43.3%
DE 26 P, Sys., N, Ob. 65.4% N, n/a, N, Ob. 23.1%
IT 20 N, n/a, N, Ob. 40.0% P, Sys., N, Ob. 35.0%
TH 12 N, n/a, N, Ob. 75.0% Installer only 16.7%
HK 11 AM, Sp., M, Ob. 54.5% P, Sys., N, Ob. 18.2%

Windows 7 eduroam
ISO 3166-1-Alpha-2 Total 1st Majority Perc. 2nd Majority Perc.

US 267 P, Sys., N, Ob. 59.9% Installer (not CAT) only 16.5%
DE 136 eduroam CAT only 51.5% P, Sys., N, Ob. 37.5%
GB 100 P, Sys., N, Ob. 43.0% eduroam CAT only 36.0%
CN 67 N, n/a, N, Ob. 67.2% P, Sys., N, Ob. 26.9%
FR 61 eduroam CAT only 44.3% P, Sys., N, Ob. 31.1%
CA 59 P, Sys., N, Ob. 50.8% eduroam CAT only 16.9%
IT 48 eduroam CAT only 52.1% P, Sys., N, Ob. 31.2%
AU 29 P, Sys., N, Ob. 62.1% N, n/a, N, Ob. 10.3%
IE 26 P, Sys., N, Ob. 42.3% eduroam CAT only 34.6%
NO 25 P, Sys., N, Ob. 52.0% eduroam CAT only 28.0%

Table G8: Majorities of labels assigned for Android 7+ and Android 6- by region

Android 7+ Campus Wi-Fi
ISO 3166-1-Alpha-2 Total 1st Majority Perc. 2nd Majority Perc.

US 591 N, n/a, N, Ob. 43.8% N, n/a, N, Cl. 39.4%
KR 86 N, n/a, N, Cl. 76.7% N, n/a, N, Ob. 23.3%
JP 59 N, n/a, N, Ob. 47.5% N, n/a, N, Cl. 35.6%
TW 49 N, n/a, N, Cl. 59.2% N, n/a, N, Ob. 38.8%
CA 42 N, n/a, N, Ob. 50.0% N, n/a, N, Cl. 31.0%
CN 36 N, n/a, N, Cl. 61.1% N, n/a, N, Ob. 38.9%
DE 28 P, Sp., N, Ob. 39.3% N, n/a, N, Ob. 21.4%
IT 20 N, n/a, N, Ob. 60.0% N, n/a, N, Cl. 25.0%
TH 20 N, n/a, N, Cl. 50.0% N, n/a, N, Ob. 45.0%
HK 17 N, n/a, N, Ob. 70.6% P, Sys., P, Ob. 17.6%

Android 7+ eduroam
ISO 3166-1-Alpha-2 Total 1st Majority Perc. 2nd Majority Perc.

US 313 N, n/a, N, Ob. 32.6% N, n/a, N, Cl. 29.1%
DE 148 eduroam CAT only 40.5% P, Sp., N, Ob. 20.9%
GB 118 N, n/a, N, Ob. 45.8% eduroam CAT only 25.4%
JP 80 N, n/a, N, Ob. 71.2% P, Sys., P, Ob. 10.0%
CN 80 N, n/a, N, Cl. 80.0% N, n/a, N, Ob. 20.0%
FR 61 eduroam CAT only 47.5% N, n/a, N, Cl. 27.9%
CA 57 N, n/a, N, Cl. 38.6% N, n/a, N, Ob. 35.1%
IT 47 eduroam CAT only 38.3% N, n/a, N, Ob. 36.2%
AU 31 N, n/a, N, Ob. 58.1% N, n/a, N, Cl. 29.0%
IE 27 N, n/a, N, Ob. 44.4% eduroam CAT only 25.9%

Android 6- Campus Wi-Fi
ISO 3166-1-Alpha-2 Total 1st Majority Perc. 2nd Majority Perc.

US 588 N, n/a, N, Ob. 49.3% N, n/a, N, Cl. 42.0%
KR 86 N, n/a, N, Cl. 76.7% N, n/a, N, Ob. 23.3%
JP 60 N, n/a, N, Ob. 56.7% N, n/a, N, Cl. 38.3%
TW 49 N, n/a, N, Cl. 59.2% N, n/a, N, Ob. 40.8%
CA 42 N, n/a, N, Ob. 57.1% N, n/a, N, Cl. 33.3%
CN 37 N, n/a, N, Cl. 59.5% N, n/a, N, Ob. 40.5%
DE 27 P, Sp., N, Ob. 51.9% N, n/a, N, Ob. 25.9%
IT 23 N, n/a, N, Ob. 65.2% N, n/a, N, Cl. 26.1%
TH 20 N, n/a, N, Cl. 50.0% N, n/a, N, Ob. 45.0%
HK 18 N, n/a, N, Ob. 94.4% N, n/a, N, Cl. 5.56%

Android 6- eduroam
ISO 3166-1-Alpha-2 Total 1st Majority Perc. 2nd Majority Perc.

US 310 N, n/a, N, Ob. 41.0% N, n/a, N, Cl. 34.2%
DE 146 eduroam CAT only 41.1% P, Sp., N, Ob. 34.2%
GB 117 N, n/a, N, Ob. 49.6% eduroam CAT only 28.2%
CN 80 N, n/a, N, Cl. 80.0% N, n/a, N, Ob. 20.0%
JP 79 N, n/a, N, Ob. 81.0% N, n/a, N, Cl. 10.1%
FR 63 eduroam CAT only 41.3% N, n/a, N, Cl. 28.6%
CA 54 N, n/a, N, Cl. 42.6% N, n/a, N, Ob. 37.0%
IT 48 N, n/a, N, Ob. 37.5% eduroam CAT only 37.5%
AU 31 N, n/a, N, Ob. 64.5% N, n/a, N, Cl. 32.3%
IE 27 N, n/a, N, Ob. 44.4% eduroam CAT only 22.2%

Table G9: Majorities of labels assigned for macOS and iOS by region

macOS Campus Wi-Fi
ISO 3166-1-Alpha-2 Total 1st Majority Perc. 2nd Majority Perc.

US 551 N, n/a, N, Cl. 80.4% Installer only 11.3%
JP 54 N, n/a, N, Cl. 75.9% N, n/a, M, Cl. 16.7%
KR 47 N, n/a, N, Cl. 95.7% Installer only 4.26%
CA 42 N, n/a, N, Cl. 78.6% N, n/a, M, Cl. 16.7%
TW 23 N, n/a, N, Cl. 82.6% N, n/a, M, Cl. 8.7%
IT 22 N, n/a, N, Cl. 86.4% Installer only 9.09%
DE 22 N, n/a, N, Cl. 72.7% N, n/a, M, Cl. 13.6%
CN 18 N, n/a, N, Cl. 100% n/a n/a
HK 16 N, n/a, N, Cl. 75.0% N, n/a, M, Cl. 25.0%
GB 16 N, n/a, N, Cl. 81.2% N, n/a, M, Cl. 12.5%

macOS eduroam
ISO 3166-1-Alpha-2 Total 1st Majority Perc. 2nd Majority Perc.

US 308 N, n/a, N, Cl. 65.9% Installer (not CAT) only 15.9%
DE 143 eduroam CAT only 58.0% N, n/a, N, Cl. 23.8%
GB 116 N, n/a, N, Cl. 51.7% eduroam CAT only 31.0%
JP 82 N, n/a, N, Cl. 82.9% N, n/a, M, Cl. 6.1%
FR 63 eduroam CAT only 55.6% N, n/a, N, Cl. 30.2%
CA 58 N, n/a, N, Cl. 70.7% eduroam CAT only 13.8%
IT 49 eduroam CAT only 51.0% N, n/a, N, Cl. 42.9%
CN 42 N, n/a, N, Cl. 100% n/a n/a
AU 32 N, n/a, N, Cl. 81.2% N, n/a, M, Cl. 12.5%
IE 27 N, n/a, N, Cl. 51.9% eduroam CAT only 37.0%

iOS Campus Wi-Fi
ISO 3166-1-Alpha-2 Total 1st Majority Perc. 2nd Majority Perc.

US 562 N, n/a, N, Cl. 80.2% Installer only 9.61%
KR 84 N, n/a, N, Cl. 100% n/a n/a
JP 61 N, n/a, N, Cl. 72.1% N, n/a, M, Cl. 19.7%
TW 50 N, n/a, N, Cl. 96.0% Installer only 2.0%
CA 42 N, n/a, N, Cl. 71.4% N, n/a, M, Cl. 21.4%
CN 33 N, n/a, N, Cl. 97.0% N, n/a, M, Cl. 3.03%
DE 19 N, n/a, N, Cl. 68.4% Installer only 15.8%
TH 19 N, n/a, N, Cl. 89.5% N, n/a, M, Cl. 5.26%
HK 18 N, n/a, N, Cl. 55.6% N, n/a, M, Cl. 44.4%
GB 16 N, n/a, N, Cl. 75.0% N, n/a, M, Cl. 25.0%

iOS eduroam
ISO 3166-1-Alpha-2 Total 1st Majority Perc. 2nd Majority Perc.

US 315 N, n/a, N, Cl. 61.9% Installer (not CAT) only 14.6%
DE 144 eduroam CAT only 58.3% N, n/a, N, Cl. 19.4%
GB 119 N, n/a, N, Cl. 52.1% eduroam CAT only 27.7%
JP 80 N, n/a, N, Cl. 78.8% N, n/a, M, Cl. 11.2%
CN 70 N, n/a, N, Cl. 100% n/a n/a
FR 60 eduroam CAT only 63.3% N, n/a, N, Cl. 20.0%
CA 57 N, n/a, N, Cl. 68.4% eduroam CAT only 17.5%
IT 43 eduroam CAT only 55.8% N, n/a, N, Cl. 34.9%
AU 30 N, n/a, N, Cl. 80.0% N, n/a, M, Cl. 13.3%
IE 27 N, n/a, N, Cl. 51.9% eduroam CAT only 37.0%
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