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Abstract—The widespread deployment of end-to-end encryp-
tion protocols such as HTTPS and QUIC has reduced the
visibility for operators into traffic on their networks. Network
operators need the visibility to monitor and mitigate Quality of
Experience (QoE) impairments in popular applications such as
video streaming. To address this problem, we propose a machine
learning based approach to monitor QoE metrics for encrypted
video traffic. We leverage network and transport layer informa-
tion as features to train machine learning classifiers for inferring
video QoE metrics such as startup delay and rebuffering events.
Using our proposed approach, network operators can detect
and react to encrypted video QoE impairments in real-time. We
evaluate our approach for YouTube adaptive video streams using
HTTPS and QUIC. The experimental evaluations show that our
approach achieves up to 90% classification accuracy for HTTPS
and up to 85% classification accuracy for QUIC.

I. INTRODUCTION

Internet traffic encryption is rapidly increasing due to secu-

rity and privacy concerns. According to Sandvine [26], 70%

of the global Internet traffic is already encrypted. HTTPS

deployment is accelerating, driven in large part by video

content providers such as YouTube and Netflix. While encryp-

tion efforts are mainly focused at the application layer (e.g.,

TLS), recent attempts have focused on deploying end-to-end

encryption at the transport layer (e.g., QUIC) as well. It is safe

to assume that the encryption trend will continue and perhaps

further accelerate in the future. While end-to-end encryption

is essential for security and privacy, it fundamentally limits

the scope of Quality of Experience (QoE) and network man-

agement by network operators.

A majority of Internet traffic now comprises of video.

Almost three-quarters of all Internet traffic was video in

2016 and the volume of video traffic is expected to grow

fourfold from 2016 to 2021 [1]. Network operators employ

a variety of network management mechanisms to satisfy strict

QoE requirements of modern video streaming applications.

Specifically, since the licensed radio spectrum is an expensive

and scarce resource, mobile network operators employ Deep

Packet Inspection (DPI) based network management tech-

niques for bandwidth optimization and to efficiently share the

radio spectrum among users [2]. However, encryption breaks

the network management mechanisms currently used by net-

work operators to monitor and optimize QoE. Prior work has

tried to address the problem of QoE monitoring for encrypted

traffic by developing various heuristics and machine learning

based approaches [10], [25]. Prior research on encrypted

video QoE monitoring has two key limitations. First, they

approach encrypted video QoE monitoring as a onetime post

hoc inference problem. However, network operators require

finer-grained real-time QoE monitoring for adaptive resource

allocation on the fly. Real-time video QoE inference allows

network operators to detect and mitigate QoE impairments

as they impact user experience. Second, prior work has only

considered QoE monitoring for encrypted videos streamed

over HTTPS. However, the use of new encrypted transport

protocols such as QUIC, which runs over UDP, is becoming

prevalent for video streaming. For example, YouTube is in-

creasingly serving video traffic over QUIC [5]. In this paper,

we present a machine learning based approach to monitor

QoE metrics in real-time for videos streamed over HTTPS

and QUIC.

We summarize our key contributions and results as follows.

• We develop a comprehensive set of features based on

network and transport layer header information. For

transport layer, we design features based on TCP flags,

retransmissions, goodput, etc. It is noteworthy that net-

work operators cannot observe TCP-like transport layer

features for QUIC. Therefore, we further develop network

layer features based on inter-arrival time, packet sizes,

packet/byte counts, throughput, etc.

• We implement a supervised machine learning based

approach to infer QoE metrics such as startup delay,

rebuffering events, and video quality in real-time for

encrypted video streams. Our machine learning based ap-

proach is capable of inferring QoE metrics continuously

in 10 second time windows as compared to one-time post

hoc inference.

• We evaluate our machine learning based approach for

inferring QoE metrics on YouTube using HTTPS and

QUIC. Our trained machine learning models achieve up

to 90% accuracy for HTTPS and up to 85% for QUIC.

II. RELATED WORK

Our work builds on a long line of research on traffic

classification and recent advancements in QoE monitoring.

In this section, we summarize prior work and highlight dif-

ferences from our proposed approach. We categorize related

research into traffic classification, encrypted traffic analysis,

QoE monitoring, and QoE monitoring for encrypted traffic.

Machine Learning Based Traffic Classification. Network

operators employ a variety of network management techniques



to implement Quality of Service (QoS) aware adaptive re-

source allocation [20]. For example, network operators typ-

ically want to prioritize VoIP flows over bulk transfer flows.

To this end, network operators identify suitable QoS Class

Indicator (QCI) for traffic flows [12] using different heuristics

[29] and machine learning [24] based approaches. In a seminal

work, Moore and Zuev [22] used a Naive Bayes classifier on

traffic features such as ports, packet inter-arrival time statistics,

and payload sizes. Bernaille et al. [8] used a similar machine

learning approach to identify application types such as FTP,

SMTP, and HTTPS within the first few packets of a TCP

flow. Prior work on traffic classification typically categorizes

encrypted traffic in a separate category (e.g., HTTPS). As

the share of encrypted Internet traffic has increased over the

last few years [26], network operators are interested in finer-

grained encrypted traffic analysis.

Encrypted Traffic Analysis. Researchers have used statis-

tical and machine learning based approaches to analyze the

content of encrypted traffic [21], [31]. White et al. [30] used

Hidden Markov Models to extract transcripts of encrypted

VoIP transmissions. Schuster et al. [28] used convolutional

neural networks with traffic burst sizes as features to identify

YouTube, Netflix, Amazon, and Vimeo videos. In contrast to

prior work on encrypted content analysis, our focus is on

analyzing application layer QoE metrics for encrypted traffic.

Monitoring Video QoE. For non-encrypted traffic, network

operators relied on Deep Packet Inspection (DPI) to access

packet header information for monitoring QoE metrics such

as startup delay and rebuffering events for streaming video.

Prometheus [4] used LASSO regression on passive measure-

ments of TCP flag counts, TCP throughput statistics, network

type (2G, 3G), and HTTP request counts to estimate QoE

metrics for mobile video streaming. YouQMon [9] analyzed

video frame offsets from HTTP headers to identify rebuffering

events for YouTube videos. QoE metrics have differing im-

pacts on overall user experience. Mean Opinion Score (MOS)

represents a user’s assessment of experience. Prior work relied

on user studies to map QoE metrics to user-perceived MOS

scores. Katsarakis et al. [18] used statistical signatures to

causally link QoE (e.g., startup delay, rebuffering events)

and QoS (e.g., throughput, retransmissions) metrics to MOS

scores. ITU’s P.1203 [15] recommendation also provides a set

of equations to map QoE metrics to MOS scores. Since these

methods require access to application layer information to

monitor QoE metrics, they are unusable for encrypted traffic.

Monitoring Video QoE for Encrypted Traffic. The increased

popularity of video content [1] and usage of encryption by

popular video content providers [13], [23] has spurred new

research on encrypted video QoE monitoring. Recent work

has focused on inferring video QoE metrics using network

and transport layer information that is readily available to

network operators for both encrypted and non-encrypted traf-

fic. Dimopoulos et al. [10] used a Random Forest classifier

with features such as packet loss, RTT, and bandwidth-delay

product to infer the average quality and rebuffering events in

YouTube streams. Orsolic et al. [25] tried different machine

learning approaches with features such as inter-arrival time,

throughput, and packet sizes to infer QoE classes (e.g., {high,

medium, low}). Prior work on encrypted video QoE moni-

toring has focused on inferring QoE metrics over the whole

video session. In contrast, we aim to infer QoE metrics in

real-time which allows network operators to react to QoE

impairments much faster. Moreover, prior work has focused

on encrypted video QoE monitoring for HTTPS running

on TCP. However, video content providers are increasingly

using encrypted transport protocols implemented on top of

UDP [5], which hides transport layer information such as

retransmissions and throughput from network operators. We

aim to infer QoE metrics for videos using QUIC, which is a

new encrypted UDP-based transport protocol.

III. BACKGROUND

Adaptive Video Streaming. Over-The-Top (OTT) video

providers primarily use HTTP Adaptive Streaming (HAS) to

serve content to end-users. The video player downloads the

video by requesting a sequence of fixed duration (generally

4 seconds) video segments from the server. The video player

stores the downloaded video segments in a local buffer, which

allows the video player to continue smooth playback while it

is waiting for video segments to arrive. Each video segment is

available at multiple quality levels typically ranging from 144p

to 1080p. The video player needs to specify the quality in its

request for each video segment. The video quality adaptation

logic, implemented in the video player, decides the requested

quality based on factors such as the available throughput [17]

and buffer status [14]. The video streaming process consists

of two phases: startup and steady state. In the startup phase,

the video player waits for the buffer to be filled up to a

certain threshold (typically 20 seconds) before starting the

playback. The delay experienced in the startup phase of video

streaming is known as startup delay. In the steady state phase,

the playback uses the downloaded segments from buffer as

more segments are requested to replenish the buffer. While

waiting for new segments, if the buffer is completely drained,

the player has to pause the playback process. This interruption

is known as a rebuffering event. The playback process then

resumes when the buffer is sufficiently replenished.

QoE and User Engagement. The video playback measures

such as startup delay, rebuffering events, and quality are

important QoE metrics that can significantly impact user

engagement. Krishnan and Sitaraman [19] showed the causal

relationships between QoE metrics and user engagement. For

example, an increase of 1 second in startup delay led to a 5.8%

increase in user abandonments. Dobrian et al. [11] showed

a negative correlation between the rate of rebuffering events

(number of rebuffering events per second) and play time. At

a high level, users abandon when the playback process takes

too long to start or it is frequently interrupted. Therefore, all

stakeholders in the video delivery ecosystem, including content

providers and network operators, need to monitor these QoE

metrics in order to mitigate QoE impairments and maximize

user satisfaction.



QoE Monitoring by Network Operators. Video content

providers can easily monitor QoE impairments because they

have direct access to QoE metrics that are measured at the

video player. QoE impairments can occur due to a variety

of issues that are in control of the content provider (e.g.,

overloaded server) or the network operator (e.g., network con-

gestion). To mitigate QoE impairments due to network issues,

network operators need to be able to measure and monitor QoE

metrics. Network operators can accomplish this by conducting

DPI of application layer header information [27] However,

the increasing deployment of end-to-end encryption by video

content providers prevents network operators from using DPI

to monitor QoE metrics. Therefore, network operators now

need to infer QoE metrics only from information visible to

them (at network and transport layers) for encrypted traffic.

Problem Statement. Network operators want to infer QoE

metrics for ongoing video streams in real-time. We assume

that a network operator is capable of identifying traffic streams

of a video content provider. To identify traffic streams of

a video content provider, network operators can (a) identify

IP addresses used by video content providers, (b) inspect

DNS responses, (c) analyze Server Name Indication (SNI) in

TLS handshakes, or (d) employ machine learning techniques

[7], [22]. A traffic stream can comprise of one or multiple

sequential or parallel traffic flows (i.e. identified by a unique

5-tuple of the source address, destination address, source port,

destination port, and the transport protocol type). The network

operator collects network and transport header information for

both downstream and upstream traffic. However, application

header information is inaccessible due to the use of end-to-

end encryption protocols such as HTTPS or QUIC. For each

traffic stream, the network operator is capable of storing packet

information in a moving time window of 10 seconds with

5 second shifts. The exact duration of the time window and

shift is selected arbitrarily and can be changed if desired. Note

that when the time window is shifted, data for only the last

5 seconds of the previous time window is retained. Given

this information, the network operator wants to infer QoE

metrics (startup delay, rebuffering events, and video quality)

for the video stream in real-time. Such real-time monitoring

can enable network operators to react to QoE impairments by

adaptive resource allocation (e.g. SONs [3]).

IV. PROPOSED APPROACH

We propose a machine learning approach to infer QoE

metrics for encrypted video traffic features. The proposed

features incorporate a wide range of traffic characteristics

derived from network- and transport-layer header information.

Overview. Figure 1 provides an overview of our machine

learning based encrypted video QoE inference approach. In

the training phase, a network operator plays a set of videos

and records their packet traces in the network as well as

ground truth video QoE metrics directly from the video

player. For each packet trace, the network operator extracts a

comprehensive set of features from the network and transport

layer headers. Given a sufficient set of videos played under

Fig. 1. Overview of proposed approach

Network-layer Transport-layer

Window Byte Counts *TCP Flag Counts
Packet Counts Out-of-order bytes/packets

Throughput TCP Goodput
Idle Time ‡Retranmission ratio

***Starting bytes-in-flight
***Ending bytes-in-flight

†Packet Packet Inter-arrival times Retransmissions per packet
Bytes per packet Receive Window

**RTT
Bytes-in-Flight

(*) We consider SYN, ACK, FIN, URG, PSH and RST flags.
(†) Computed statistics are used as individual features: mean, min, max, median,
standard deviation, skewness, kurtosis.
(‡) Ratio of 0, 1, 2 and >2 retransmissions are considered.
(**) Only for upstream traffic.
(***) Only for real-time QoE inference.

TABLE I
LIST OF OVERALL FEATURES CONSIDERED

diverse network conditions, the network operator then trains

supervised machine learning models for different QoE metrics.

In the testing phase, the network operator extracts the feature

set for a test video from its packet trace and uses the machine

learning models to infer QoE metrics. Network operators can

use the inferred QoE metrics to detect and mitigate QoE

impairments using different network management techniques.

Features. Table I provides a summary of network and trans-

port layer features that we propose to extract from packet

traces. Network layer features are derived from information

in IP headers. Transport layer features are derived from

information in TCP/UDP headers. We compute every feature

separately for upstream and downstream traffic. Our proposed

features can be further divided into window and packet based

features. Window based features are calculated by aggregating

information for all packets that arrive in a time window. Packet

based features are calculated by analyzing individual packets.

For packet based features, we compute summary statistics

such as mean, median, max, min, standard deviation, kurtosis,

and skewness. It is noteworthy that features for startup delay

are extracted only once in the first time window. In contrast,

features for rebuffering events and video quality are extracted

in a continuous fashion for every time window. Moreover,

since our 10 second time window operates in 5 second shifts,

these features are derived separately for the first and last half of

each time window. Overall, we extract a set of 109 features to

infer startup delay and 226 features for quality and rebuffering

events. We next discuss our proposed features.



• Network layer window features include packet counts,

byte counts, and throughput. Idle time is derived by first

splitting the time window into 100 millisecond bins and

assigning packets to bins by rounding their arrival time to

100 milliseconds. The number of empty 100 millisecond

bins (with no packets) constitutes idle time.

• Network layer packet features include packet inter-arrival

times and packet size in terms of bytes per packet. Note

that network layer features do not take into account

retransmissions due to packet loss.

• Transport layer window features include flag counts for

TCP connections, out-of-order bytes/packets (ignoring

retransmissions), TCP goodput (i.e throughput minus

retransmissions), and retransmission ratios. Starting and

ending bytes-in-flight correspond to number of bytes

which have not been acknowledged at the start and at

end of the current time window.

• Transport layer packet features include retransmissions

per packet and advertised receive window. Round Trip

Time (RTT) is calculated only for upstream traffic by

using packet sequence numbers and their corresponding

acknowledgments, ignoring retransmitted packets. Note

that RTT is dependent on the vantage point (i.e., RTT at

the last mile would differ from RTT at the core network.)

Bytes-in-flight are bytes which have been sent but not

acknowledged, and are calculated based on the highest

TCP sequence number and acknowledgment seen. We use

sequence numbers from packets from the video server and

acknowledgments from the user for downstream and vice

versa for upstream, ignoring retransmissions.

Network layer features. The set of network layer features

are derived only using IP packet header information. As

we discuss next, many of these features have significant

correlations with different QoE metrics. Figures 2, 3, and 4

plot the conditional Cumulative Distribution Functions (CDFs)

of different network layer features for different QoE metrics.

Startup Delay. To plot conditional distributions for startup

delay, we label sessions with up to 3.3 seconds startup delay as

Started and the remaining as Not Started. We expect sessions

with smaller startup delay to have downloaded more data in

the startup phase of the video streaming process. Figure 2(a)

shows that Started sessions download a median of 1.5 more

megabytes (MB) from server than Not Started sessions in

the first 3.3 seconds. The slower download process is also

reflected in the distribution of average packet inter-arrival time

for downstream traffic plotted in Figure 2(b). We note that

20% Not Started sessions and only 3% Started sessions have

average packet inter-arrival time larger than 18 milliseconds.

Overall, we also observe this pattern in the distribution of

downstream throughput in Figure 2(c). We note that median

downstream throughput of Started sessions is 18 megabits-

per-second (Mbps) more than that of Not Started sessions.

Rebuffering Events. To plot conditional distributions for re-

buffering events, we label 10 second time windows with at

least one rebuffering event as Rebuffering and the remaining

as No Rebuffering. Features are calculated separately for the

first and last half of every time window. We expect time

windows with rebuffering events to have downloaded less data

than those without rebuffering events. Figure 3(a) shows that

60% Rebuffering time windows download no data in the first

half of time windows as compared to less than 20% for No

Rebuffering time windows. This pattern is also evident for

downstream throughput in the first half of time windows.

Figure 3(b) shows that more than 90% Rebuffering time

windows get less than 10 Mbps downstream throughput in

the first half of time windows as compared to only 50%

No Rebuffering time windows. Figure 3(c) shows the same

pattern for downstream throughput in the second half of time

windows.

Video Quality. To plot conditional distributions for video

quality, we label 10 second time windows as High quality if

the average resolution is higher than 480p and the remaining

as Low quality. We expect more data to be downloaded

for High quality time windows than Low quality time win-

dows because higher resolution videos are encoded at much

higher bitrates. Figures 4(a) and 4(b) plot distributions for

downstream throughput in the first and last half of time

windows, respectively. We note that more than 90% Low

quality and approximately 50% High quality time windows

get less than 10 Mbps downstream throughput. We also expect

lower quality video streaming to send less data upstream due to

less signaling [6] and acknowledgments for downloaded data.

Figure 4(c) shows that 45% Low quality and 30% for High

quality time windows have negligible upstream throughput.

Transport layer features. The set of transport layer features

are derived using TCP packet header information. Note that

these features are unavailable for QUIC, which runs over UDP.

Figures 5, 6, and 7 plot the conditional CDFs of different

transport layer features for different QoE metrics.

Startup Delay. Figure 5(a) plots the distribution of down-

stream TCP goodput (throughput excluding retransmissions)

for Started and Not Started sessions in the first 3.3 seconds.

We expect video streaming sessions with low startup delay

to have higher TCP goodput than videos with high startup

delay. We observe that 85% Not Started sessions have less

than 20 Mbps downstream goodput. In contrast, only 40%

Started sessions have less than 20 Mbps goodput. The dif-

ference in goodput is explained, in part, by more frequent

retransmissions. Figure 5(b) shows that 95% Started sessions

have an average of at most one retransmission per downstream

packet as compared to less than 50% for Not Started videos.

Low average packet retransmissions are also correlated with

packet retransmission ratio. We plot the distribution of ratio

of downstream packets that are never retransmitted in Figure

5(c). More than 90% Started sessions have 80% packets on

average with zero retransmissions. In contrast, only 50% Not

Started sessions achieved the 80% mark.

Rebuffering Events. We expect time windows with rebuffering

events to have more unacknowledged bytes than those with

no rebuffering. Figure 6(a) shows that 18% Rebuffering

time windows have more than 50 MB of bytes-in-flight on

average on the downstream. In comparison, less than 5% No
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Fig. 3. Network-layer feature distributions for rebuffering events.
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Fig. 4. Network-layer feature distributions for video quality.

Rebuffering time windows have more than 50 MB bytes-

in-flight. With more unacknowledged bytes, we expect more

frequent downstream retransmissions for Rebuffering time

windows. Figure 6(b) shows that 75% No Rebuffering time

windows have zero retransmissions per packet downstream as

compared to 62% for Rebuffering time windows. Finally, we

expect higher downstream goodput for No Rebuffering time

windows as compared to Rebuffering time windows. Figure

6(c) shows that 50% No Rebuffering time windows have more

than 5 Mbps goodput as compared to less than 10% for No

Rebuffering time windows.

Video Quality. For video quality, we again expect fewer unac-

knowledged bytes for time windows with High quality. Figure

7(a) plots downstream minimum bytes-in-flight for the second

half of time windows. We note that 90% High quality time

windows have zero bytes-in-flight at some point in the second

half of time windows as compared to approximately 80% of

Low quality windows. We again expect more unacknowledged

bytes to lead to more frequent retransmissions. Figure 7(b)

shows that 80% High quality time windows have zero average

retransmissions per downstream packets. In contrast, only 40%

Low quality windows have zero average retransmissions per

downstream packet. As shown in Figure 7(c), retransmissions

in turn impact downstream goodput. 55% High quality time

windows get less than 5 Mbps goodput as compared to 99%

of Low quality time windows.

Classification. To infer video QoE metrics using network and

transport layer features, we use decision tree based machine

learning classification algorithms that are known to outperform

other classification algorithms for similar problems [10], [25]

and are also human interpretable. We train our machine

learning classifiers using J48 implementation of the C4.5

decision tree algorithm. We also use AdaBoost ensemble meta-

classification approach to reduce misclassifications.

V. RESULTS & DISCUSSIONS
A. Data

We use a controlled lab testbed to collect data for evaluat-

ing our proposed approach. We automatically play YouTube

videos using Selenium WebDriver in Google Chrome running

on Ubuntu 16.04 OS. A set of pre-selected videos are played
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Fig. 5. Transport-layer feature distributions for startup delay of 3.3 seconds.
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Fig. 6. Transport-layer feature distributions for rebuffering events.

0 50 100 150 200

serverMinBytesInFlight(MB)

0

0.2

0.4

0.6

0.8

1

C
D

F

High

Low

(a) downstream minimum bytes-in-flight for last half
of time windows

0 2 4 6

serverAvgRetransmit

0

0.2

0.4

0.6

0.8

1

C
D

F

High

Low

(b) downstream average retransmissions per packet
for last half of time windows

0 20 40 60 80 100 120

serverGoodput (Mbps)

0

0.2

0.4

0.6

0.8

1

C
D

F

High

Low

(c) downstream TCP goodput for last half of time
windows

Fig. 7. Transport-layer feature distributions for video quality.

on fresh instances of Google Chrome in a sequential manner.

These videos include movie trailers, short interviews, and

sport highlights. The videos are available in quality levels

ranging from 144p to 1080p. The average video duration

is approximately 2 minutes. Each video streaming session

elapses up to 4 minutes to allow for delays due to page load,

startup delay, and rebuffering events.

To collect ground truth for video QoE metrics, we use

YouTube’s IFrame API [32] to capture playback events re-

ported by the video player. The API outputs a set of values

which indicate player state (not started, paused, playing,

completed, buffering) using the getPlayerState() function. The

API also provides functions for accessing information about

play time, buffer status, and video quality. We use tcpdump

to extract our proposed features from the network and transport

layer headers during video playback.

To emulate real-world dynamic network conditions, we use

network emulation tools netem and tc. Using these tools

in Linux, we can emulate different network conditions in

terms of bandwidth, delay, and packet loss. We randomly

set network conditions before every video playback session.

We further fluctuate network conditions every 10 seconds

during the video playback to allow YouTube’s video quality

adaptation logic to adapt to changing network conditions. We

use experimental flags supported by Google Chrome to switch

between QUIC and TCP as the underlying transport protocol.

The experimental flags can be accessed using chrome://flags

and QUIC can be enabled by selecting the Experimental QUIC

protocol option.

We collect YouTube video streaming data over the duration

of four months (starting March 2017) using our controlled lab

testbed. Over this period, we collect data for 5,488 sessions

running over QUIC and 5,375 sessions running over standard

HTTPS using TCP.

We define startup delay as a binary variable for machine

learning based classification. Specifically, we define startup



delay for a video streaming session as a binary indicator of it

being higher or lower than k seconds during the startup phase

of video streaming. For this work, we consider the values of k

at 3.3, 6.6, and 10 seconds. Based on this definition, we label

videos as Started if the startup delay is below k, Not Started

otherwise. We note that the class imbalance between Started

and Not Started classes increases for larger values of k.

We also define rebuffering events and video quality as

binary variables for machine learning based classification. In

contrast to startup delay, rebuffering events and video quality

are quantified in a continuous fashion for 10 second time

windows during the steady state phase of video streaming.

More specifically, we label every 10 second time window as

No Rebuffering or Rebuffering (i.e., at least one rebuffering

event) based on the frequency of rebuffering events in the time

window. Similarly, we label every 10 second time window as

Low or High quality based on the average video resolution in

the time window. More specifically, we label a time window

as High quality if the average resolution is higher than 480p

and Low quality otherwise. Note that we try to extract features

(from network and transport layer headers) and ground truth

(from video player) for each 10 second time window. Since

videos are sometimes completely buffered before playback

completes, we observe some time windows where we do

not capture any packet traces. Since we cannot extract our

features, we discard these time windows. We note that class

instances for rebuffering events are imbalanced by a factor of

around 3.2:1 in favor of the Rebuffering class for HTTPS. For

QUIC, the class imbalance is around 1.6:1 in favor of the Non

Rebuffering class. We define binary QoE metrics for problem

simplification and to ensure sufficient data for model training.

An operator may choose to use more granular QoE metrics

such as quality levels of 144p, 240p, 480p, 720p, and 1080p.

B. Classification Results

We evaluate our machine learning learning classifiers using

the standard 10-fold cross-validation. We report the classifi-

cation results in terms of both precision and recall separately

for each class.

For startup delay, we train models that classify video

sessions based on whether or not the playback process started

in the first k seconds. Tables I(a), II(a), and III(a) show the

classification results for YouTube videos played using standard

HTTPS with startup delays of k = 3.3, 6.6, and 10 seconds,

respectively. We observe that the classifiers achieve at least

75% precision and recall on average for different values of

k. We note the highest precision and recall values of 81.5%

for k = 3.3. It is noteworthy that precision and recall decline

as k increases. We surmise that degradation in classification

performance happens for larger k value due to increased class

imbalance as well as due to fewer rare class instances available

for training. Tables I(b), II(b), and III(b) show the classification

results for YouTube videos player using QUIC. We see similar

trends for QUIC, with at least 77% precision and recall on

average for different values of k. For k = 3.3, the classifier

for QUIC achieves 3.4% more precision and 3.3% more recall

than the classifier for HTTPS. For k = 6.6, there is negligible

difference in performance. For k = 10, the classifier for QUIC

performs around 3% better than the classifier for HTTPS.

(a) HTTPS

Actual

Predicted
Started Not Started Precision Recall

Started 2824 505 82.8% 87.5%

Not Started 585 1561 72.7% 79.4%

Weighted 81.5% 81.5%

Average

(b) QUIC

Actual

Predicted
Started Not Started Precision Recall

Started 1122 408 72.5% 73.3%

Not Started 426 3532 89.6% 89.2%

Weighted 84.9% 84.8%

Average

TABLE II
CONFUSION MATRIX AND PERFORMANCE METRICS FOR CLASSIFICATION

OF INITIAL DELAY FOR k = 3.3

(a) HTTPS

Actual

Predicted
Started Not Started Precision Recall

Started 3178 467 81.4% 87.2%

Not Started 725 1005 68.3% 58.1%

Weighted 79.9% 80.0%

Average

(b) QUIC

Actual

Predicted
Started Not Started Precision Recall

Started 1826 533 74.5% 77.7%

Not Started 624 2505 82.5% 80.1%

Weighted 79.0% 78.9%

Average

TABLE III
CONFUSION MATRIX AND PERFORMANCE METRICS FOR CLASSIFICATION

OF INITIAL DELAY FOR k = 6.6

(a) HTTPS

Actual

Predicted
Started Not Started Precision Recall

Started 3413 476 81.6% 87.8%

Not Started 771 715 48.1% 60.0%

Weighted 74.8% 75.8%

Average

(b) QUIC

Actual

Predicted
Started Not Started Precision Recall

Started 2038 560 75.3% 78.4%

Not Started 669 2221 79.9% 76.9%

Weighted 77.7% 77.6%

Average

TABLE IV
CONFUSION MATRIX AND PERFORMANCE METRICS FOR CLASSIFICATION

OF INITIAL DELAY FOR k = 10

Tables IV(a) and IV(b) report classification results for

rebuffering events for HTTPS and QUIC, respectively. Our

trained classifiers achieve around 90% precision and recall

for YouTube over HTTPS and around 80% for YouTube over

QUIC. As expected, we note that the dominant class in terms

of number of instances has better classification performance

than the non-dominant class for both protocols. We surmise

that better classification performance for HTTPS as compared

to QUIC, despite more class imbalance, reflects the benefit of

using transport layer features in inferring rebuffering events.

Tables V(a) and V(b) report classification results for video

quality for YouTube over HTTPS and QUIC, respectively.



(a) HTTPS

Actual

Predicted No Rebuffering Precision Recall

Rebuffering

No Rebuffering 56854 3267 92.3% 94.6%

Rebuffering 4737 14118 74.9% 81.2%

Weighted 89.7% 89.9%

Average

(b) QUIC

Actual

Predicted No Rebuffering Precision Recall

Rebuffering

No Rebuffering 32909 13588 74% 70.8%

Rebuffering 11576 63657 82.4% 84.6%

Weighted 79.2% 79.3%

Average

TABLE V
CONFUSION MATRICES AND PERFORMANCE METRICS FOR

CLASSIFICATION OF REBUFFERING EVENTS

Our trained classifier achieves above 85% precision and recall

for YouTube over HTTPS and around 72% for YouTube

over QUIC. We note that our trained classifiers perform

significantly worse for Low quality, which is the rare class,

as compared to High quality. For HTTPS, the precision of

the Low quality class is 25.1% lower than that for the High

quality class. For QUIC, the precision of the High quality

class is 6.2% lower than that for the Low quality class. These

class-specific differences in classification performance can be

explained by class imbalance. For example, we note that class

imbalance is roughly 4:1 in favor of High class for HTTPS.

Consequently, the classifier’s performance is much better for

High class.

(a) HTTPS

Actual

Predicted
High Low Precision Recall

High 59291 4492 89.7% 93.0%

Low 6782 8215 64.6% 54.8%

Weighted 85.0% 85.7%

Average

(b) QUIC

Actual

Predicted
High Low Precision Recall

High 37740 16632 68.9% 69.4%

Low 17013 50144 75.1% 74.7%

Weighted 72.3% 72.3%

Average

TABLE VI
CONFUSION MATRICES AND PERFORMANCE METRICS FOR

CLASSIFICATION OF VIDEO QUALITY

C. Insights

The trained machine learning models can provide us insights

into different network and transport layer features that have

significant impact on video QoE. Below, we visualize two

example decision tree models.

Figure 8 visualizes a pruned decision tree model that is

trained to infer rebuffering events for YouTube streaming

on HTTPS. To prune the decision tree, we apply a 10%

confidence factor and impose a limit of at least 1800 instances

at leaf nodes. The pruned decision tree model is approximately

4% less accurate (in terms of precision and recall) as compared

to the unpruned decision tree. The upstream maximum bytes

per packet is the decision tree’s root node, which represents

the most informative feature. The feature split of the root node

shows that time windows with at least one upstream packet

Fig. 8. Decision tree to infer rebuffering events on HTTPS

larger than 1099 bytes are classified as No Rebuffering.

Further inspection of upstream packets revealed that this is

typical packet size of HTTP GET requests by the video

player to download video segments. We also note that time

windows with at least 1 upstream TCP SYN flag are likely

to be labeled as Rebuffering. Upstream SYN flags may

indicate new connection attempts due to disruptions, leading

to rebuffering events, in the video download process.

Fig. 9. Decision tree to infer startup delay on QUIC

Figure 9 visualizes a pruned decision tree model that is

trained to infer startup delay (at k = 3.3 seconds) for YouTube

streaming on QUIC. The decision tree was pruned using

a confidence factor of 10% with a limit of at least 100

instances at leaf nodes. The pruned decision tree model is

approximately 2% less accurate as compared to its unpruned

counterpart. The root node of the decision tree shows that

fewer upstream packets are indicative of Not Started sessions.

Higher downstream average packet inter-arrival time are also

indicative of Not Started sessions.



D. Limitations

We note that our results and insights are specific to YouTube

and its current video quality adaption logic. We expect the

models generated by our approach to differ across not only

different video content providers but also over time for the

same video content provider. However, our approach is gen-

eralizable to any video content provider.

To train supervised machine learning models, network oper-

ators can collect ground truth data by streaming videos on test

devices. Since network conditions and video quality adaptation

logic can change over time, a network operator can collect

new ground truth continuously, estimate the effectiveness of

the current models, and retrain with new ground truth data if

they are inaccurate.

Our approach is primarily geared towards detection of QoE

impairments in encrypted video traffic. However, network

operators need actionable insights to address the detected QoE

impairments. Network operators can use the decision tree

model to infer potential root causes of QoE impairments.

Some QoE impairments may arise due to issues in the video

content provider’s network which is beyond the control of

the network operator. The network operator can collaborate

with the video content provider to mitigate such issues using

architectures such as EONA [16], which defines interfaces for

network operators and content providers to share information

regarding application experience.

VI. CONCLUSION

We presented a machine learning based approach for real-

time inference of encrypted video QoE metrics. We first

designed a comprehensive set of features from network and

transport layer information. For videos streamed over HTTPS,

we utilize both network and transport layer features. For videos

streamed over QUIC, we utilize only network layer features.

Using the feature sets, we then trained supervised decision

tree models on YouTube videos streamed over HTTPS and

QUIC. The experimental evaluation showed that our proposed

approach achieved up to 90% classification accuracy for

HTTPS and up to 85% classification accuracy for QUIC.
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